Reference: Ke X, et al. (2023) Secretory production of 7-dehydrocholesterol by engineered Saccharomyces cerevisiae. Biotechnol J 18(12):e2300056

Reference Help

Abstract


Background: 7-Dehydrocholesterol (7-DHC) can be directly converted to vitamin D3 by UV irradiation and de novo synthesis of 7-DHC in engineered Saccharomyces cerevisiae has been recognized as an attractive substitution to traditional chemical synthesis. Introduction of sterol extracellular transport pathway for the secretory production of 7-DHC is a promising approach to achieve higher titer and simplify the downstream purification processing.

Methods and results: A series of genes involved in ergosterol pathway were combined reinforced and reengineered in S. cerevisiae. A biphasic fermentation system was introduced and 7-DHC was found to be enriched in oil-phase with an increased titer by 1.5-folds. Quantitative PCR revealed that say1, atf2, pdr5, pry1-3 involved in sterol storage and transport were all significantly induced in sterol overproduced strain. To enhance the secretion capacity, lipid transporters of pathogen-related yeast proteins (Pry), Niemann-Pick disease type C2 (NPC2), ATP-binding cassette (ABC)-family, and their homologues were screened. Both individual and synergetic overexpression of Plant pathogenesis Related protein-1 (Pr-1) and Sterol transport1 (St1) largely increased the de novo biosynthesis and secretory productivity of 7-DHC, and the final titer reached 28.2 mg g-1 with a secretion ratio of 41.4%, which was 26.5-folds higher than the original strain. In addition, the cooperation between Pr-1 and St1 in sterol transport was further confirmed by confocal microscopy, molecular docking, and directed site-mutation.

Conclusion: Selective secretion of different sterol intermediates was characterized in sterol over-produced strain and the extracellular export of 7-DHC developed in present study significantly improved the cell biosynthetic capacity, which offered a novel modification idea for 7-DHC de novo biosynthesis by S. cerevisiae cell factory.

Reference Type
Journal Article
Authors
Ke X, Pan ZH, Du HF, Shen Y, Shen JD, Liu ZQ, Zheng YG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference