Reference: Li X and Hu B (2023) Improvement of Oleanolic Acid Production in Saccharomyces Cerevisiae Based on OptKnock Framework. Stud Health Technol Inform 308:111-122

Reference Help

Abstract


Biosynthesis of plant-derived natural products in the eukaryotic microbe Saccharomyces cerevisiae often faces the issue of the inefficient production due to the poor compatibility between the heterologous genes and chassis cells. In order to improve the biosynthetic efficiency of heterologous production of plant secondary metabolites in S. cerevisiae, people usually do metabolic engineering in and around the heterologous metabolic pathways based on researchers' experience and mass of trials, which usually consumes a lot of manpower and financial resources. Herein, to further improve the heterologous production of oleanolic acid (OA), a pentacyclic triterpenoid in many plants with several promising pharmacological activities, in a genetically engineered, OA-producing strain S. cerevisiae OA07 effectively, a genome-scale metabolic model of the strain was developed, with the named as Yeast-OA07, and then OptKnock, a flux balance analysis-based pathway design algorithm with bilevel objectives, was utilized to develop in silico gene-knockout strategies to guide the molecular operations in S. cerevisiae OA07. Yeast8-OA07 contained 1133 genes, 2702 metabolites, and 3997 reactions. Five in silico gene-knockout strategies, which were expected to increase OA productivities, were obtained based on the metabolic flux analysis of Yeast8-OA07 through OptKnock. Afterwards, five mutant strains, named as LK1, LK2, LK3, LK4 and LK5, were constructed according to the in silico strategies. It was found that the mutant strain LK2, in which 2-amino-4-hydroxy-6-hydroxymethyl dihydropteridine diphosphokinase-encoding gene FOL1 and formate dehydrogenase-encoding gene FDH1 were deleted, had an OA yield of 125.04 mg·L-1, which was significantlyhigher than the original strain OA07 (89.50 mg·L-1), while the mutant strain LK5, which eliminated paminobenzoic acid synthase-encoding gene ABZ1 and glycine hydroxymethyl transferase-encoding gene SHM1, had an even higher OA yield of 207.37 mg·L-1. Nevertheless, strain LK6, which was developed by integrating the in silico gene-knockout strategies of LK2 and LK5, had a significant decrease of OA production than S. cerevisiae OA07, indicating that in silico knockout strategies do not fit to in vivo iteration directly. Our study provides a novel, efficient method to improve the heterologous production of plant metabolites in microbial cell factories.

Reference Type
Journal Article
Authors
Li X, Hu B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference