Reference: Chen L, et al. (2023) HybridGCN for protein solubility prediction with adaptive weighting of multiple features. J Cheminform 15(1):118

Reference Help

Abstract


The solubility of proteins stands as a pivotal factor in the realm of pharmaceutical research and production. Addressing the imperative to enhance production efficiency and curtail experimental costs, the demand arises for computational models adept at accurately predicting solubility based on provided datasets. Prior investigations have leveraged deep learning models and feature engineering techniques to distill features from raw protein sequences for solubility prediction. However, these methodologies have not thoroughly delved into the interdependencies among features or their respective magnitudes of significance. This study introduces HybridGCN, a pioneering Hybrid Graph Convolutional Network that elevates solubility prediction accuracy through the combination of diverse features, encompassing sophisticated deep-learning features and classical biophysical features. An exploration into the intricate interplay between deep-learning features and biophysical features revealed that specific biophysical attributes, notably evolutionary features, complement features extracted by advanced deep-learning models. Augmenting the model's capability for feature representation, we employed ESM, a substantial protein language model, to derive a zero-shot learning feature capturing comprehensive and pertinent information concerning protein functions and structures. Furthermore, we proposed a novel feature fusion module termed Adaptive Feature Re-weighting (AFR) to integrate multiple features, thereby enabling the fine-tuning of feature importance. Ablation experiments and comparative analyses attest to the efficacy of the HybridGCN approach, culminating in state-of-the-art performances on the public eSOL and S. cerevisiae datasets.

Reference Type
Journal Article
Authors
Chen L, Wu R, Zhou F, Zhang H, Liu JK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference