Reference: Hirota S, et al. (2024) Highly genomic instability of super-polyploid strains of Saccharomyces cerevisiae. J Biosci Bioeng 137(2):77-84

Reference Help

Abstract


Polyploid (2n, 3n, and 4n) genomes are known to be unstable in Saccharomyces cerevisiae. Here, we attempted construction of super-polypoid strains (defined as having higher ploidy than tetraploidy) up to 32n by using the matα2-PBT method that we newly developed and investigated their genomic stability. It is known that cell size increases as ploidy increases up to tetraploid. However, unexpectedly, there was no change in the average cell size of the super-polyploid strains compared with tetraploid or pentaploid strains. Smaller sized cells were observed at a rather higher frequency in super-polyploid cell populations compared with those of diploid, triploid and tetraploid strains, suggesting that ploidy reduction in super-polyploid strains occurs quickly at a relatively high frequency. Assuming that ploidy reduction occurs through chromosome loss (or non-disjunction) during mitotic growth, we also estimated the frequency of chromosome loss (or non-disjunction) in various polyploid strains. Our results indicated that the frequency of chromosome loss (or non-disjunction) is drastically increased (10-2-10-3/cells plated) in super-polyploid strains compared with that (10-4-10-5/cells plated) of conventional polyploid (2n-4n) strains. This is the first attempt of construction of super-polyploid strains and investigation of their genomic stability in S. cerevisiae. We believe that the matα2-PBT method will be an invaluable tool for investigating a variety of interesting issues regarding polyploidy and their genomic characterization in eukaryotes.

Reference Type
Journal Article
Authors
Hirota S, Nakayama Y, Ekino K, Harashima S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference