Reference: Liu J, et al. (2024) Identifying vital nodes for yeast network by dynamic network entropy. BMC Bioinformatics 25(1):242

Reference Help

Abstract


Background: The progress of the cell cycle of yeast involves the regulatory relationships between genes and the interactions proteins. However, it is still obscure which type of protein plays a decisive role in regulation and how to identify the vital nodes in the regulatory network. To elucidate the sensitive node or gene in the progression of yeast, here, we select 8 crucial regulatory factors from the yeast cell cycle to decipher a specific network and propose a simple mixed K2 algorithm to identify effectively the sensitive nodes and genes in the evolution of yeast.

Results: Considering the multivariate of cell cycle data, we first utilize the K2 algorithm limited to the stationary interval for the time series segmentation to measure the scores for refining the specific network. After that, we employ the network entropy to effectively screen the obtained specific network, and simulate the gene expression data by a normal distribution approximation and the screened specific network by the partial least squares method. We can conclude that the robustness of the specific network screened by network entropy is better than that of the specific network with the determined relationship by comparing the obtained specific network with the determined relationship. Finally, we can determine that the node CDH1 has the highest score in the specific network through a sensitivity score calculated by network entropy implying the gene CDH1 is the most sensitive regulatory factor.

Conclusions: It is clearly of great potential value to reconstruct and visualize gene regulatory networks according to gene databases for life activities. Here, we present an available algorithm to achieve the network reconstruction by measuring the network entropy and identifying the vital nodes in the specific nodes. The results indicate that inhibiting or enhancing the expression of CDH1 can maximize the inhibition or enhancement of the yeast cell cycle. Although our algorithm is simple, it is also the first step in deciphering the profound mystery of gene regulation.

Reference Type
Journal Article
Authors
Liu J, Wang Y, Men J, Wang H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference