Reference: Rampelt H, et al. (2018) Assembly of the Mitochondrial Cristae Organizer Mic10 Is Regulated by Mic26-Mic27 Antagonism and Cardiolipin. J Mol Biol 430(13):1883-1890

Reference Help

Abstract


The multi-subunit mitochondrial contact site and cristae organizing system (MICOS) is a conserved protein complex of the inner mitochondrial membrane that is essential for maintenance of cristae architecture. The core subunit Mic10 forms large oligomers that build a scaffold and induce membrane curvature. The regulation of Mic10 oligomerization is poorly understood. We report that Mic26 exerts a destabilizing effect on Mic10 oligomers and thus functions in an antagonistic manner to the stabilizing subunit Mic27. The mitochondrial signature phospholipid cardiolipin shows a stabilizing function on Mic10 oligomers. Our findings indicate that the Mic10 core machinery of MICOS is regulated by several mechanisms, including interaction with cardiolipin and antagonistic actions of Mic26 and Mic27.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rampelt H, Wollweber F, Gerke C, de Boer R, van der Klei IJ, Bohnert M, Pfanner N, van der Laan M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference