Reference: Mondal S, et al. (2024) Conserved mechanism of Xrn1 regulation by glycolytic flux and protein aggregation. Heliyon 10(19):e38786

Reference Help

Abstract


The regulation of gene expression in eukaryotes relies largely on the action of exoribonucleases, evolutionarily conserved enzymes that digest decapped messenger RNAs in the 5'-3' direction. The activity of Xrn1, the major yeast exoribonuclease, is regulated by targeted changes in its cellular localisation in direct response to the cell's metabolic state. When fermentable carbon sources are available, active Xrn1 is diffusely localised in the cytosol. Upon depletion of these sources, Xrn1 is sequestered at the plasma membrane-associated protein complex, the eisosome, and becomes inactive. Although this phenomenon has been described previously, the molecular mechanisms underlying these changes remain unknown. We report that the binding of Xrn1 to the plasma membrane is subject to glycolytic flux, rather than the availability of a fermentable carbon source, is independent of TORC1 activity and requires the core eisosomal proteins Pil1 and Lsp1. We identify the SH3-like domain of the Xrn1 protein as a putative interaction domain. In addition, we show that when expressed in Saccharomyces cerevisiae, the human orthologue of Xrn1 mirrors its yeast counterpart, i.e., it segregates to the eisosome under conditions of halted glycolysis. Our results not only advance our understanding of Xrn1 regulation but also indicate that this regulatory principle is conserved from yeast to humans.

Reference Type
Journal Article
Authors
Mondal S, Zahumensky J, Vesela P, Malinsky J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference