Reference: Wu H, et al. (2025) Isolation and purification of lactic acid bacteria and yeasts based on a multi-channel magnetic flow device and rapid qualitative and quantitative detection. Spectrochim Acta A Mol Biomol Spectrosc 327:125296

Reference Help

Abstract


Rapid isolation and identification of lactic acid bacteria and yeasts during fermentation is of great significance for quality control and regulation of fermented foods. In this study, we prepared a multi-channel magnetic flow device for rapid separation and purification of lactic acid bacteria and yeast, and based on SERS spectrum, we made rapid qualitative and quantitative analysis of Lactobacillus plantarum, Lactococcus lactis and Saccharomyces cerevisiae. The results showed that the synthesized Synthesized Fe3O4-Van antibiotic magnetic beads are paramagnetic; Fe3O4-Van antibiotic magnetic beads achieved capture efficiencies of more than 98.5 % for both L. plantarum and L. lactis at 102-104 CFU/mL, respectively. Separation and purification efficiency of single S. cerevisiae, L. plantarum and L. lactis by multi-channel magnetic flow device all reached more than 98 % with good isolation and purification results. The SERS spectra of the three microorganisms were classified and analyzed using linear discriminant analysis (LDA), and the accuracy of the established LDA model was 100 %, which completely differentiated the SERS spectra of the three microorganisms,and realized the qualitative identification of L. plantarum, L. lactis, and S. cerevisiae, and finally, quantitative model was established with the logarithmic values (lg C) of different concentrations of L. plantarum, L. lactis, and S. cerevisiae as the horizontal coordinates, and the Raman intensities at their strongest characteristic peaks of 512 cm-1, 1669 cm-1, and 1125 cm-1, respectively, were used as vertical coordinates to establish a quantitative model, with the lowest detection limit of 10 CFU/mL, and the digital quantification of lactic acid bacteria and yeast were achieved. It provided an effective means for real-time monitoring and tracking of the dynamics of lactic acid bacteria and yeast in the fermentation process and the quality control of fermented foods.

Reference Type
Journal Article
Authors
Wu H, Liu S, Li M, Zhao L, Zhu Y, Zhao G, Ma Y, Sun L, Liu Y, Liang D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference