Reference: Zuttion S, et al. (2024) Monitoring mitochondrial localization of dual localized proteins using a Bi-Genomic Mitochondrial-Split-GFP. Methods Enzymol 706:75-95

Reference Help

Abstract


Even if a myriad of approaches has been developed to identify the subcellular localization of a protein, the easiest and fastest way remains to fuse the protein to Green Fluorescent Protein (GFP) and visualize its location using fluorescence microscopy. However, this strategy is not well suited to visualize the organellar pools of proteins that are simultaneously localized both in the cytosol and in organelles because the GFP signal of a cytosolic pool of the protein (cytosolic echoform) will inevitably mask or overlay the GFP signal of the organellar pool of the protein (organellar echoform). To solve this issue, we engineered a dedicated yeast strain expressing a Bi-Genomic Mitochondrial-Split-GFP. This split-GFP is bi-genomic because the first ten ß-strands of GFP (GFPß1-10) are encoded by the mitochondrial genome and translated by mitoribosomes whereas the remaining ß-strand of GFP (GFPß11) is fused to the protein of interest encoded by the nucleus and expressed by cytosolic ribosomes. Consequently, if the GFPß11-tagged protein localizes into mitochondria, GFP will be reconstituted by self-assembly GFPß1-10 and GFPß11 thereby generating a GFP signal restricted to mitochondria and detectable by regular fluorescence microscopy. In addition, because mitochondrial translocases and import mechanisms are evolutionary well conserved, the BiG Mito-Split-GFP yeast strain can be used to probe mitochondrial importability of proteins regardless of their organismal origins and can thus serve to identify unsuspected mitochondrial echoforms readily from any organism.

Reference Type
Journal Article
Authors
Zuttion S, Senger B, Panja C, Friant S, Kucharczyk R, Becker HD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference