Reference: Akid H, et al. (2024) Graph-based machine learning model for weight prediction in protein-protein networks. BMC Bioinformatics 25(1):349

Reference Help

Abstract


Proteins interact with each other in complex ways to perform significant biological functions. These interactions, known as protein-protein interactions (PPIs), can be depicted as a graph where proteins are nodes and their interactions are edges. The development of high-throughput experimental technologies allows for the generation of numerous data which permits increasing the sophistication of PPI models. However, despite significant progress, current PPI networks remain incomplete. Discovering missing interactions through experimental techniques can be costly, time-consuming, and challenging. Therefore, computational approaches have emerged as valuable tools for predicting missing interactions. In PPI networks, a graph is usually used to model the interactions between proteins. An edge between two proteins indicates a known interaction, while the absence of an edge means the interaction is not known or missed. However, this binary representation overlooks the reliability of known interactions when predicting new ones. To address this challenge, we propose a novel approach for link prediction in weighted protein-protein networks, where interaction weights denote confidence scores. By leveraging data from the yeast Saccharomyces cerevisiae obtained from the STRING database, we introduce a new model that combines similarity-based algorithms and aggregated confidence score weights for accurate link prediction purposes. Our model significantly improves prediction accuracy, surpassing traditional approaches in terms of Mean Absolute Error, Mean Relative Absolute Error, and Root Mean Square Error. Our proposed approach holds the potential for improved accuracy in predicting PPIs, which is crucial for better understanding the underlying biological processes.

Reference Type
Journal Article
Authors
Akid H, Chennen K, Frey G, Thompson J, Ben Ayed M, Lachiche N
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference