Reference: Ferreira A, et al. (2025) Oncogenic KRAS mutations modulate BAX-mediated cell death. Biochim Biophys Acta Mol Cell Res 1872(1):119872

Reference Help

Abstract


Kirsten rat sarcoma viral oncogene homolog (KRAS) belongs to the GTPase RAS superfamily, which regulates several cell-signaling pathways involved in the control of important cellular functions, including apoptosis. Oncogenic mutations in KRAS are considered the most common gain-of-function mutations, affecting 30-50 % of colorectal cancer (CRC) patients. While RAS proteins usually play an anti-apoptotic role, little is known about the involvement of KRAS mutations in apoptosis regulation. Here, we aimed to elucidate the role of mutated human KRAS in the regulation of BAX, a key pro-apoptotic member of the Bcl-2 family. For this purpose, we took advantage of the simpler yeast model Saccharomyces cerevisiae, using cells deficient in the main yeast RAS isoform (ras2Δ) co-expressing wild-type KRAS (KRASWT) or the most frequent KRAS mutations found in CRC - KRASG12D, KRASG12V or KRASG13D, along with human BAX. We show that, in comparison with KRASWT, KRAS mutants confer resistance to BAX-induced death and cytochrome c (cyt c) release. The modulation of BAX by KRAS isoforms seems to result from a direct interaction between these proteins, as they co-localize at the mitochondria and there is evidence they may physically interact. We further show that acetic acid significantly increased cell death in cells expressing BAX and co-expressing oncogenic KRAS mutants, but not KRASWT. This suggests a potential mechanism explaining the increased sensitivity of CRC cells harboring a KRAS-activated pathway to acetate. These findings contribute to a clearer understanding of how KRAS regulate BAX function, a relevant aspect in tumor progression.

Reference Type
Journal Article
Authors
Ferreira A, Manon S, Eyitayo AR, Chaves SR, Côrte-Real M, Preto A, Sousa MJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference