Reference: Ziogiene D, et al. (2024) Dolichol kinases from yeast, nematode and human can replace each other and exchange their domains creating active chimeric enzymes in yeast. PLoS One 19(11):e0313330

Reference Help

Abstract


Protein glycosylation is a fundamental modification crucial for numerous intra- and extracellular functions in all eukaryotes. The phosphorylated dolichol (Dol-P) is utilized in N-linked protein glycosylation and other glycosylation pathways. Dolichol kinase (DK) plays a key role in catalyzing the phosphorylation of dolichol. The glycosylation patterns in the Kluyveromyces lactis DK mutant revealed that the yeast well tolerated a minor deficiency in Dol-P by adjusting protein glycosylation. Comparative analysis of sequences of DK homologs from different species of eukaryotes, archaea and bacteria and AlphaFold3 structural model studies, allowed us to predict that DK is most likely composed of two structural/functional domains. The activity of predicted K. lactis DK C-terminal domain expressed from the single copy in the chromosome was not sufficient to keep protein glycosylation level necessary for survival of K. lactis. However, the glycosylation level was partially restored by additionally provided and overexpressed N- or C-terminal domain. Moreover, co-expression of the individual N-and C-terminal domains restored the glycosylation of vacuolar carboxypeptidase Y in both K. lactis and Saccharomyces cerevisiae. Despite the differences in length and non-homologous sequences of the N-terminal domains the human and nematode Caenorhabditis elegans DKs successfully complemented DK functions in both yeast species. Additionally, the N-terminal domains of K. lactis and C. elegans DK could functionally substitute for one another, creating active chimeric enzymes. Our results suggest that while the C-terminal domain remains crucial for DK activity, the N-terminal domain may serve not only as a structural domain but also as a possible regulator of DK activity.

Reference Type
Journal Article
Authors
Ziogiene D, Burdulis A, Timinskas A, Zinkeviciute R, Vasiliunaite E, Norkiene M, Gedvilaite A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference