Yeasts are attractive hosts for the production of heterologous products due to their genetic tractability and relative ease of growth. While the baker's yeast Saccharomyces cerevisiae is a powerful workhorse of the biotechnology industry, the species has metabolic limitations and it is critical that we develop alternative platforms that will facilitate the development of bioprocesses that rely on sustainable feedstocks. In this study, we used synthetic biology tools to construct coumaric acid-producing strains of Kluyveromyces marxianus, a yeast whose physiological traits render it attractive for biotechnology applications. Coumaric acid is a building block in the synthesis of many different families of aromatics and is a key precursor for the synthesis of complect phenylpropanoid molecules, including many flavours and aromas. The starting point for this work was a K. marxianus chassis strain that has increased flux towards the synthesis of tyrosine and phenylalanine, the aromatic amino acids that can serve as starting points for coumaric acid synthesis. Following principles of synthetic biology, a modular approach was taken to identify the best solution to different metabolic possibilities and these were then combined in different ways. For the first step, it was established that the route from phenylalanine was superior to that from tyrosine and the combined overexpression of PlPAL, AtC4H and AtCPR1 delivered the highest yield of coumaric acid. Next, it was established that while Pdc5 and Aro10 both had phenylpyruvate decarboxylase activity, inactivation of ARO10 was sufficient to prevent flux loss in the pathway. Since phenylalanine is the starting point, efforts were made to improve efficiency of its production. It was found that glutamate was a preferred nitrogen source for coumaric acid production, and this knowledge was used to engineer a strain that overexpressed S. cerevisiae GDH1 and delivered higher yields of coumaric acid. Ultimately, this strategy led to the development of strains that has yields of up to 48 mg coumaric acid /g glucose. Strains were evaluated in bioreactors to investigate the effects of different process parameters. These analyses indicated that engineered strains face some redox balance challenges and further work will be required overcome these to develop strains that can perform well under industrial conditions.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|