Reference: Pechmann S (2024) Heterogeneous folding landscapes and predetermined breaking points within a protein family. Protein Sci 33(12):e5205

Reference Help

Abstract


The accurate prediction of protein structures with artificial intelligence has been a spectacular success. Yet, how proteins fold into their native structures inside the cell remains incompletely understood. Of particular interest is to rationalize how proteins interact with the protein homeostasis network, an organism specific set of protein folding and quality control enzymes. Failure of protein homeostasis leads to widespread misfolding and aggregation, and thus neurodegeneration. Here, I present a comparative analysis of the folding of 16 single-domain proteins from the same organism across a protein family, the Saccharomyces cerevisiae small GTPases. Using computational modeling to directly probe protein folding dynamics, this work shows how near identical structures from the same folding environment can exhibit heterogeneous folding landscapes. Remarkably, yeast small GTPases are found to unfold along different pathways either via the N- or C-terminus initiated by structure-encoded predetermined breaking points. Degrons as recognition signals for ubiquitin-dependent degradation were systematically absent from the initial unfolding sites, as if to protect from too rapid degradation upon spontaneous unfolding or before completion of the folding. The presented results highlight a direct coordination of folding pathway and protein homeostasis interaction signals across a protein family. A deeper understanding of the interdependence of proteins with their folding environment will help to rationalize and combat diseases linked to protein misfolding and dysregulation. More generally, this work underlines the importance of understanding protein folding in the cellular context, and highlights valuable constraints towards a systems-level understanding of protein homeostasis.

Reference Type
Journal Article
Authors
Pechmann S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference