Reference: Tahir M, et al. (2025) Block selection in multiblock partial least squares for modeling genotype-phenotype relations in Saccharomyces. PLoS One 20(1):e0316350

Reference Help

Abstract


In data-based modeling, correlations between explanatory variables often lead to the formation of distinct gene blocks. This study focuses on identifying influential gene blocks and key variables within these blocks, with a particular application in mind: genotype-phenotype mapping in Saccharomyces. To overcome the challenges of a limited sample size, we use partial least squares (PLS). These gene blocks, which consist of combinations of genes, play a critical role in explaining phenotypic variations. Using partial least squares with multiple blocks, we propose a novel approach, weighted block importance on projection in partial least squares (BwIP-mbPLS), to identify influential gene blocks. Variable importance on projection is used to select significant genes within these blocks. Our study models copper chloride at 0.375mM and melibiose at 2% efficiency and rate in Saccharomyces cerevisiae yeast. Analysis based on silhouette index and total distance within clusters using k-means shows the classification of 5629 genes into 18 gene blocks. Remarkably, BwIP-mbPLS identifies 4 gene blocks on average and significantly improves the prediction of efficiency-based phenotypes. In contrast, traditional block importance in partial least squares projection identifies 6 gene blocks on average and shows comparable or better performance than BIP-mbPLS for rate-based phenotypes. Remarkably, most gene blocks contain fewer than 10 influential genes. Both proposed variants consistently outperform conventional approaches such as partial least squares and multi-block partial least squares in predicting phenotypes. These results highlight the potential of our methods for advancing data-based modeling and genotype-phenotype mapping.

Reference Type
Journal Article
Authors
Tahir M, Yude B, Mehmood T, Bashir S, Ashraf Z
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference