Reference: Baranek-Grabińska M, et al. (2024) Developing a Novel and Optimized Yeast Model for Human VDAC Research. Int J Mol Sci 25(23)

Reference Help

Abstract


The voltage-dependent anion-selective channel (VDAC) plays a crucial role in mitochondrial function, and VDAC paralogs are considered to ensure the differential integration of mitochondrial functions with cellular activities. Heterologous expression of VDAC paralogs in the yeast Saccharomyces cerevisiae por1Δ mutant cells is often employed in studies of functional differentiation of human VDAC paralogs (hVDAC1-hVDAC3) regardless of the presence of the yeast second VDAC paralog (yVDAC2) encoded by the POR2 gene. Here, we applied por1Δpor2Δ double mutants and relevant por1Δ and por2Δ single mutants, derived from two S. cerevisiae strains (M3 and BY4741) differing distinctly in auxotrophic markers but commonly used for heterologous expression of hVDAC paralogs, to study the effect of the presence of yVDAC2 and cell genotypes including MET15, the latter resulting in a low level of hydrogen sulfide (H2S), on the complementation potential of heterologous expression of hVDAC paralogs. The results indicated that yVDAC2 might contribute to the complementation potential. Moreover, the possibility to reverse the growth phenotype through heterologous expression of hVDAC paralogs in the presence of the applied yeast cell genotype backgrounds was particularly diverse for hVDAC3 and depended on the presence of the protein cysteine residues and expression of MET15. Thus, the difference in the set of auxotrophic markers in yeast cells, including MET15 contributing to the H2S level, may create a different background for the modification of cysteine residues in hVDAC3 and thus explain the different effects of the presence and deletion of cysteine residues in hVDAC3 in M3-Δpor1Δpor2 and BY4741-Δpor1Δpor2 cells. The different phenotypes displayed by BY4741-Δpor1Δpor2 and M3-Δpor1Δpor2 cells following heterologous expression of a particular hVDAC paralog make them valuable models for the study of human VDAC proteins, especially hVDAC3, as a representative of VDAC protein sensitive to the reduction-oxidation state.

Reference Type
Journal Article
Authors
Baranek-Grabińska M, Grabiński W, Musso D, Karachitos A, Kmita H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference