Reference: Spiridon-Bodi M, et al. (2025) Dual regulation of the levels and function of Start transcriptional repressors drives G1 arrest in response to cell wall stress. Cell Commun Signal 23(1):31

Reference Help

Abstract


Background: Many different stress signaling pathways converge in a common response: slowdown or arrest cell cycle in the G1 phase. The G1/S transition (called Start in budding yeast) is a key checkpoint controlled by positive and negative regulators. Among them, Whi7 and Whi5 are transcriptional repressors of the G1/S transcriptional program, yeast functional homologs of the Retinoblastoma family proteins in mammalian cells. Under standard conditions, Whi7 plays a lesser role than Whi5 in Start inhibition. However, under cell wall stress, Whi7 is induced and plays a more important role in G1/S control. In this work, we investigated the functional hallmarks of Whi7 and Whi5, which determine their strength as Start inhibitors under cell wall stress.

Methods: The response of Saccharomyces cerevisiae to Calcofluor White was investigated to characterize the regulation and function of Whi7 and Whi5 under cell wall stress. To control their protein levels, we used dose-dependent β-estradiol-induced expression and auxin-induced degron protein fusions. We also performed Chromatin Immunoprecipitation assays to investigate Whi7 and Whi5 association with Start promoters and scored cell cycle arrest and re-entry using cell microscopy assays.

Results: We found that cell wall stress promoted the specific upregulation of the Whi7 Start repressor. First, although cell wall stress increases Whi7 protein levels, this is not the only determinant behind the Whi7 function in promoting G1 arrest. Indeed, artificial induction of Whi5 at the same protein level resulted in a lower G1 block. Second, under cell wall stress, Whi7 was specifically recruited to SBF-target promoters, independent of the increase in its protein levels or cell cycle stage. Finally, we found that Whi7 protein instability further increased during cell wall stress and that Whi7 degradation triggered advanced cell cycle re-entry.

Conclusions: Here, we show that cell wall stress signaling specifically enhances Whi7 function as a Start transcriptional repressor. Importantly, we identified new Whi7-specific regulatory mechanisms that do not operate in the Whi5 repressor. Our results indicate that cells may benefit from stress-specific repressors to ensure the stress-induced G1 arrest and that Whi7 rapid degradation may be particularly important to resume cell cycle upon adaptation.

Reference Type
Journal Article
Authors
Spiridon-Bodi M, Ros-Carrero C, Igual JC, Gomar-Alba M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference