Reference: Johnson Z, et al. (2025) Enhanced Tolerance to Antifungals as a General Feature of Rho- Mutants in Yeast Species: Implications to Positive Selection of Respiratory Deficiency. Microorganisms 13(1)

Reference Help

Abstract


Although the mitochondrial genome is an attribute of all eukaryotes, some yeast species (called petite-positive) can replicate without mitochondrial DNA (mtDNA). Strains without mtDNA (known as rho- mutants or petite mutants) are respiration-deficient and require fermentable carbon sources (such as glucose) for their metabolism. However, they are compromised in many aspects of fitness and competitiveness. Nevertheless, a few research groups have reported that some petite mutants of Candida glabrata and Saccharomyces cerevisiae manifested higher levels of tolerance to the antifungal fluconazole than their wild-type (WT) counterparts. In this study, we show that elevated tolerance to two or three out of four tested antifungals is a generic feature of at least five petite-positive species of yeasts including C. glabrata (higher tolerance of petites to clotrimazole and miconazole), S. bayanus (tolerance to clotrimazole, fluconazole, and miconazole), S. cerevisiae (tolerance to clotrimazole and fluconazole), S. paradoxus (tolerance to clotrimazole, fluconazole, and miconazole), and S. pastorianus (tolerance to clotrimazole and fluconazole). Comparing the levels of tolerance to the antifungals in WT and petite mutants was based on measuring the diameters of the zones of inhibition (ZOIs) using disc diffusion assays. The mode of inhibition in the majority of WT strains by all antifungals was fungicidal; most of the rho- mutants manifested fungistatic inhibition. We observed partial (not complete) inhibition in WT, with four different types of ZOI patterns that were species- and antifungal-specific. The partial inhibition was characterised by the presence of antifungal-tolerant colonies within ZOI areas. The inability of these colonies selected from ZOIs to grow on glycerol, as a single source of carbon, proved that they were rho- mutants spontaneously generated in the WT populations. The results on the elevated tolerance of petite strains to antifungals are discussed in terms of the prospective positive selection of respiratory-deficient mutants and the various implications of such selection.

Reference Type
Journal Article
Authors
Johnson Z, Nadim F, Zubko MK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference