Reference: Maitra S, et al. (2025) Resourceful and economical designing of fermentation medium for lab and commercial strains of yeast from alternative feedstock: 'transgenic oilcane'. Biotechnol Biofuels Bioprod 18(1):14

Reference Help

Abstract


Background: Sugarcane plant engineered to accumulate lipids in its vegetative tissue is being developed as a new bioenergy crop. The new crop would be a source of juice, oil, and cellulosic sugars. However, limited tolerance of industrially recognized yeasts towards inhibitors generated during the processing of lignocellulosic biomass to produce fermentable sugars is a major challenge in developing scalable processes for second-generation drop-in fuel production. To this end, hydrolysates generated from engineered sugarcane-'oilcane' bagasse contain added phenolics and fatty acids that further restrict the growth of fermenting microorganisms and necessitate nutrient supplementation and/or detoxification of hydrolysate which makes the fermentation process expensive. Herein, we propose a resourceful and economical approach for growing lab and commercial strains of S. cerevisiae on unrefined cellulosic sugars aerobically and fermentatively.

Results: An equal ratio of hydrolysate and juice was found optimum for growth and fermentation by lab and commercial strains of Saccharomyces cerevisiae engineered for xylose fermentation. The industrial strain grew and fermented efficiently under low aeration conditions having an ethanol titer, yield, specific and volumetric productivities of 46.96 ± 0.19 g/l, 0.51 ± 0.00 g/g, 0.27 ± 0.02 g/g.h and 1.95 ± 0.01 g/l.h, respectively, while the lab strain grew better under higher aeration conditions having the ethanol titer, yield, specific and volumetric productivities of 24.93 ± 0.09, 0.27 ± 0.00 g/g, 0.17 ± 0.00 g/g.h and 1.04 ± 0.00 g/l.h, respectively. Acclimation of cultures in a blended medium significantly improved the performance of the yeast strains.

Conclusions: The addition of transgenic oilcane juice, which is inedible and rich in amino acids, to the hydrolysate averted the need for expensive nutrient supplementation and detoxification steps of hydrolysate. The approach provides an economical solution to reduce the cost of fermentation at an industrial scale for second-generation drop-in fuel production.

Reference Type
Journal Article
Authors
Maitra S, Dien B, Eilts K, Kuanyshev N, Cortes-Pena YR, Jin YS, Guest JS, Singh V
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference