Reference: Al-Marrawi M, et al. (2025) In silico protein structural analysis of PRMT5 and RUVBL1 mutations arising in human cancers. Cancer Genet 292-293:49-56

Reference Help

Abstract


DNA double strand breaks (DSBs) can be generated spontaneously during DNA replication and are repaired primarily by Homologous Recombination (HR). However, efficient repair requires chromatin remodeling to allow the recombination machinery access to the break. TIP60 is a complex conserved from yeast to humans that is required for histone acetylation and modulation of HR activity at DSBs. Two enzymatic activities within the TIP60 complex, KAT5 (a histone acetyltransferase) and RUVBL1 (an AAA+ ATPase) are required for efficient HR repair. Post-translational modification of RUVBL1 by the PRMT5 methyltransferase activates the complex acetyltransferase activity and facilitates error free HR repair. In S. pombe a direct interaction between PRMT5 and the acetyltransferase subunit of the TIP60 complex (KAT5) was also identified. The TIP60 complex has been partially solved experimentally in both humans and S. cerevisiae, but not S. pombe. Here, we used in silico protein structure analysis to investigate structural conservation between S. pombe and human PRMT5 and RUVBL1. We found that there is more similarity in structure conservation between S. pombe and human proteins than between S. cerevisiae and human. Next, we queried the COSMIC database to analyze how mutations occurring in human cancers affect the structure and function of these proteins. Artificial intelligence algorithms that predict how likely mutations are to promote cellular transformation and immortalization show that RUVBL1 mutations should have a more drastic effect than PRMT5. Indeed, in silico protein structural analysis shows that PRMT5 mutations are less likely to destabilize enzyme function. Conversely, most RUVBL1 mutations occur in a region required for interaction with its partner (RUVBL2). These data suggests that cancer mutations could destabilize the TIP60 complex. Sequence conservation analysis between S. pombe and humans shows that the residues identified in cancer cells are highly conserved, suggesting that this may be an essential process in eukaryotic DSB repair. These results shed light on mechanisms of DSB repair and also highlight how S. pombe remains a great model system for analyzing DSB repair processes that are tractable in human cells.

Reference Type
Journal Article
Authors
Al-Marrawi M, Petreaca RC, Bouley RA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference