Reference: Murath P, et al. (2025) Distinct genome stabilization procedures lead to phenotypic variability in newly generated interspecific yeast hybrids. Front Microbiol 16:1472832

Reference Help

Abstract


Yeast cells sometimes engage in interspecific hybridization, i.e., crosses between different species. These interspecific yeast hybrids combine phenotypes of the two parental species and can therefore allow fast adaptation to new niches. This is perhaps most evident in beer yeasts, where a cross between Saccharomyces cerevisiae and Saccharomyces eubayanus led to the emergence of the lager yeast Saccharomyces pastorianus, which combines the fermentation capacity of S. cerevisiae with the cold tolerance of S. eubayanus, making the hybrid suitable for the typical cool lager beer fermentation conditions. Interestingly, however, merging two different genomes into one cell causes genomic instability and rearrangements, ultimately leading to a reorganized but more stable hybrid genome. Here, we investigate how different parameters influence this genome stabilization trajectory and ultimately can lead to variants with different industrial phenotypes. We generated seven de novo interspecific hybrids between two S. eubayanus strains and an ale S. cerevisiae strain, subsequently exposing them to three different genome stabilization procedures. Next, we analyzed the fermentation characteristics and metabolite production of selected stabilized hybrids. Our results reveal how variation in the genome stabilization procedure leads to phenotypic variability and can generate additional diversity after the initial hybridization process. Moreover, several stabilized hybrids showed phenotypes that are interesting for industrial applications.

Reference Type
Journal Article
Authors
Murath P, Hoffmann S, Herrera-Malaver B, Bustamante L, Verstrepen K, Steensels J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference