Reference: Byun JY, et al. (2025) Rap1 overexpression boosts triterpenoid saponin production in yeast by enhancing precursor supply and heterologous gene expression. Microb Cell Fact 24(1):47

Reference Help

Abstract


Background: Metabolic engineering to increase the supply of precursors, such as 2,3-oxidosqualene (OSQ), and manipulate heterologous biosynthetic pathways through the strategic overexpression of multiple genes is promising for increasing the microbial production of triterpenoid saponins. However, the multiple use of constitutive promoters, typically derived from glycolytic or ribosomal protein promoters, can cause transcription factor competition, reducing the expression of each gene. To avoid this issue, we overexpressed transcriptional factor repressor activator protein 1 (Rap1), known to upregulate glycolytic gene expression and be involved in various metabolic pathways, including pyruvate dehydrogenase (PDH) bypass, the mevalonate (MVA) pathway, and sterol synthesis.

Results: Transcriptome analysis of a wild-type yeast strain revealed that Rap1 overexpression significantly upregulated several central carbon metabolism (CCM)-related genes for OSQ production, including glycolytic genes, particularly after the diauxic shift phase. To validate the effect on triterpenoid saponin production, we engineered a Saccharomyces cerevisiae strain capable of producing ginsenoside compound K (CK). Notably, compared with the control strain, the CK-producing strain with Rap1 overexpression showed upregulation of heterologous genes controlled by TDH3 promoter, and a continuous supply of precursors to the CK synthesis pathway, resulting in a 4.5-fold increase in CK production.

Conclusion: These results highlight Rap1 overexpression as a robust strategy to increase triterpenoid production in yeast cell factories. Additionally, this approach provides a versatile framework for enhancing both precursor supply and heterologous gene expression.

Reference Type
Journal Article
Authors
Byun JY, Nguyen TT, Cho BK, Park SH, Kim SC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference