Reference: Qiu F, et al. (2025) Effect of Saccharomyces cerevisiae inoculation on the co-fermentation of Clostridium kluyveri and Clostridium tyrobutyricum: A strategy for controlling acidity and enhancing aroma in strong-flavor Baijiu. Int J Food Microbiol 435:111172

Reference Help

Abstract


Microbial synergistic fermentation plays a vital role in the intelligent brewing and industrial upgrading of the Chinese traditional Baijiu fermentation industry. In this study, a chain-elongating microbial assemblages consisting of Clostridium and varying proportions of S. cerevisiae was applied to a solid-state simulated fermentation system to validate its functionality during strong-flavor Baijiu fermentation. The addition of S. cerevisiae promoted the hydrolysis of fermented grains and reduced the acidity compared with Clostridium biofortification (Group CFE; P < 0.05). The most significant enhancement in volatile flavor substances was achieved by the addition of S. cerevisiae at a high proportion (Group SFB), where the yields of ethyl hexanoate, phenylethyl alcohol, and ethanol increased by 191.2 %, 109.8 %, and 59.7 %, respectively. The OPLS-DA model (R2X = 0.976, Q2 = 0.992) identified seven volatile flavor substances that effectively distinguished the different co-fermented grains (VIP > 1, P < 0.05). S. cerevisiae accelerated the enrichment of Lentilactobacillus, Lactiplantibacillus, Loigolactobacillus, and Clostridium_sensu_stricto_12. Metabolic pathway and correlation analysis revealed that S. cerevisiae provides endogenous ethanol to chain-elongating microorganisms, and this fungal-bacterial synergistic fermentation enhances the reverse β-oxidation pathway, ultimately contributing to the production of volatile flavor substances. Overall, the microbial assembly pattern of chain-elongating microbial assemblages will help achieve quality enhancement and intelligent control by increasing the production of flavor ethyl esters and ethanol for Baijiu solid-state fermentation system.

Reference Type
Journal Article
Authors
Qiu F, Li W, Zhang Y, Li H, Chen X, Niu J, Li X, Sun B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference