Reference: Planells-Cárcel A, et al. (2025) Metabolic Engineering of a Serotonin Overproducing Saccharomyces cerevisiae Strain. Microb Biotechnol 18(4):e70140

Reference Help

Abstract


The EU Green Deal prioritises the transformation of the chemical industry to a more environmentally sustainable model. This involves using microorganisms, such as Saccharomyces cerevisiae, to produce molecules more sustainably through biotechnological approaches. In this study, we demonstrate an example of serotonin production using S. cerevisiae as a cell factory, along with its optimisation and upscaling. To achieve this, we introduced two heterologous genes, the combination of tryptophan decarboxylase from Clostridium sporogenes (CsTDC) and tryptamine 5-hydroxylase from Oryza sativa (OsT5H), to complete the serotonin biosynthetic pathway using L-tryptophan (L-TRP) as a precursor. By modifying ARO4 to a feedback-resistant version (ARO4*), the flux of the shikimate pathway was significantly increased and serotonin production was achieved at levels up to 120 mg/L directly from the glucose source. After a medium optimisation, a final concentration of 80 g/L glucose and 300 mg/L of nitrogen resulted in better conditions for increasing serotonin titres. Using this medium in a 1 L bioreactor fermentation resulted in approximately 250 mg/L of serotonin. A targeted metabolomic study of the bioreactor growth medium identified potential bottlenecks in the serotonin-overproducing strain and future targets for increasing its titre. We have constructed a strain of S. cerevisiae that represents the first steps towards feasible industrial production of serotonin using a sustainable and environmentally friendly approach, paving the way for the development of similar biotechnological strategies in the future.

Reference Type
Journal Article
Authors
Planells-Cárcel A, Valera-García E, Quintas G, Martínez JL, Muñiz-Calvo S, Guillamón JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference