Reference: Sun Q, et al. (2025) Unraveling Time-Resolved Transcriptional and Metabolic Shifts in the Mixed Fermentation of Saccharomyces cerevisiae and Hanseniaspora uvarum. J Agric Food Chem

Reference Help

Abstract


Wine fermentation and flavor formation are shaped by complex biochemical reactions driven by a variety of microorganisms. Non-Saccharomyces yeasts, such as Hanseniaspora uvarum (HU), are often used in mixed fermentation with Saccharomyces cerevisiae (SC) to enhance wine aroma. However, the lack of systematic knowledge regarding transcriptional responses and metabolic behaviors during fermentation has hindered the rational control of the mixed fermentation processes. To address this, we investigated transcriptional dynamics and metabolic behavior throughout the entire fermentation process, with a particular focus on the roles of microbial metabolism in flavor formation during mixed fermentation with HU. At the transcriptional level, the addition of HU led to significant changes in SC's gene expression, particularly in pathways related to glyoxylate and dicarboxylate metabolism, pyruvate metabolism, and amino sugar and nucleotide sugar metabolism. Furthermore, using genome-scale metabolic modeling, we uncovered key metabolic strategies employed by the two strains in mixed fermentation. These include distinct sugar utilization patterns, ethanol production, fatty acid metabolism, and central carbon allocation strategies. Notably, we identified two metabolic bypasses, from dihydroxyacetone phosphate to glycerol and from glucose-6-phosphate to the pentose phosphate pathway, which were found to reduce ethanol production and maintain the metabolic balance. Flux distribution analysis also revealed connections among organic acids, amino acids, and fermentation products, highlighting the role of a partial TCA cycle during fermentation. Additionally, metabolic interactions between SC and HU were identified, contributing to the enhanced production of volatile compounds, such as 2-phenylethanol and indole-3-ethanol in mixed fermentation. These findings provide a more comprehensive understanding of transcriptional regulation and metabolic strategies under fermentation conditions. They also offer practical targets for future bioengineering efforts aimed at controlling and optimizing the wine flavor.

Reference Type
Journal Article
Authors
Sun Q, An P, Li P, Wang H, Tao S, Liu Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference