Reference: Kennedy T, et al. (2025) Deep learning-driven imaging of cell division and cell growth across an entire eukaryotic life cycle. Mol Biol Cell mbcE25010009

Reference Help

Abstract


The life cycle of eukaryotic microorganisms involves complex transitions between states such as dormancy, mating, meiosis, and cell division, which are often studied independently from each other. Therefore, most microbial life cycles are theoretical reconstructions from partial observations of cellular states. Here we show that complete microbial life cycles can be directly and continuously studied by combining microfluidic culturing, life cycle stage-specific segmentation of micrographs, and a novel cell tracking algorithm, FIEST, based on deep learning video frame interpolation. As proof of principle, we quantitatively imaged and compared cell growth and the activity state of the cell division kinase, Cdk1, across the life cycle of Saccharomyces cerevisiae for up to three sexually reproducing generations. Our analysis of S. cerevisiae's life cycle provided the following new insights: (1) the accumulation of cell cycle regulators, such as Whi5, is tailored to each life cycle stage; (2) cell growth always preceded exit from non-proliferative states in our conditions; (3) the temporal coordination of meiotic events is the same across sexually reproducing populations when each generation is exposed to same conditions; (4) information such as cell size and morphology resets after each sexual reproduction cycle. Image processing and tracking algorithms are available as the Python package Yeastvision, which could be used study pathogens such as Candida glabrata, Cryptococcus neoformans, Colletotrichum acutatum, and other unicellular systems. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].

Reference Type
Journal Article
Authors
Kennedy T, Yalcinkaya B, Ramakanth S, Neupane S, Tadic N, Buchler NE, Argüello-Miranda O
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference