Reference: Su XB, et al. (2025) Basic features of cellular inositol metabolism as revealed by a newly developed LC-MS method. Biochem J

Reference Help

Abstract


Inositol plays key roles in many cellular processes. Several studies focussed on the quantitative analysis of phosphorylated forms of inositol, enabled by analytical tools developed to detect these highly charged molecules. Direct measurement of free inositol however has been challenging, because the molecule is uncharged and polar. As a result, the mechanisms maintaining the homeostasis of the inositol remains poorly understood. In this study, we overcome these challenges by developing a quantitative liquid chromatography - mass spectrometry (LC-MS) protocol that can resolve and quantify the three main sugar molecules present inside cells: glucose, fructose, and inositol, as well as distinguish the clinically relevant isomers of inositol: myo-, scyllo-, and chiro-inositol. The quantitative power of the new method was validated by accurately monitoring the changes of inositol levels under well-established conditions in Saccharomyces cerevisiae, where the endogenous synthesis of inositol is increased in the transcription repressor OPI1 knockout opi1D and decreased when wild type yeast is fed with exogenous inositol. The method also revealed a new layer of regulation that takes place when exogenous inositol is added to further boost endogenous inositol synthesis in opi1D in a positive feedback loop. Analyses of mammalian cell lines provided many new insights into inositol metabolism. First, different cell lines displayed distinct sugar profiles and inositol concentrations and responded differently to inositol starvation. Second, mammalian cells can synthesize and import scyllo- but not chiro-inositol. Importantly, our method lent direct evidence to the previous hypothesis that lithium treatment could significantly reduce inositol levels in primary cortical neurons, thus diminishing the pool of free inositol available to the phosphoinositide cycle.

Reference Type
Journal Article
Authors
Su XB, Fedeli V, Liu G, Amma M, Boulasiki P, Wang J, Bizzarri M, Jessen H, Fiedler D, Riccio A, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference