Reference: Liu L, et al. (2025) The Application of Multiple Strategies to Enhance Methylparaben Synthesis Using the Engineered Saccharomyces cerevisiae. Biology (Basel) 14(5)

Reference Help

Abstract


Methylparaben (MP) is an important member of the paraben family of aromatic compounds, which is under great demand in the industrial market as an antibacterial agent, preservative, and feed additive, and also has potential application value in the preparation of bio-based polyetherester materials. However, the current chemical production method of MP has various problems, such as serious environmental pollution, its dependence on petrochemical resources, and the generation of different types of waste. It is of great significance to develop an environmentally friendly MP synthesis method via synthetic biology. In this work, Saccharomyces cerevisiae was used as the host to construct the biosynthetic pathway of MP and various metabolic engineering strategies were applied to break the bottlenecks in the synthesis process, including the regulation of the rate-limiting steps in the endogenous shikimate pathway, the enhancement of central carbon flux via knocking out competitive pathways and promoting precursors synthesis, and the improvement of the exogenous enzyme expression using promoter engineering. The final engineered S. cerevisiae could produce 68.59 mg/L MP in shake flasks, which was the highest titer of MP synthesized by S. cerevisiae so far. It was indicated that the strategies applied in our work were effective in promoting the synthesis of MP, which not only laid an important foundation for the industrial production of MP, but also provided a platform for the synthesis of other aromatic compounds.

Reference Type
Journal Article
Authors
Liu L, Wang K, Liu P, Ba L, Liu H, Liu Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference