Reference: Hurbain J, et al. (2025) Quantifying the nuclear localization of fluorescently tagged proteins. Bioinform Adv 5(1):vbaf114

Reference Help

Abstract


Motivation: Cells are dynamic, continually responding to intra- and extracellular signals. Measuring the response to these signals in individual cells is challenging. Signal transduction is fast, but reporters for downstream gene expression are slow: fluorescent proteins must be expressed and mature. An alternative is to fluorescently tag and monitor the intracellular locations of transcription factors and other effectors. These proteins enter or exit the nucleus in minutes, after upstream signalling modifies their phosphorylation state. Although such approaches are increasingly popular, there is no consensus on how to quantify nuclear localization.

Results: Using budding yeast, we developed a convolutional neural network that determines nuclear localization from fluorescence and, optionally, bright-field images. Focusing on changing extracellular glucose, we generated ground-truth data using strains with a transcription factor and a nuclear protein tagged with fluorescent markers. We showed that the neural network-based approach outperformed seven published methods, particularly when predicting single-cell time series, which are key to determining how cells respond. Collectively, our results are conclusive-using machine learning to automatically determine the appropriate image processing consistently outperforms ad hoc approaches. Adopting such methods promises to both improve the accuracy and, with transfer learning, the consistency of single-cell analyses.

Availability and implementation: We performed our analysis in Python; code is available at https://git.ecdf.ed.ac.uk/v1jhurba/neunet-nucloc.git.

Reference Type
Journal Article
Authors
Hurbain J, Ten Wolde PR, Swain PS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference