Reference: Zhou H, et al. (2025) Regulation of Arginine Metabolism by Transcription Factor Btn2p in a Mixed Culture of Saccharomyces cerevisiae and Pediococcus pentosaceus and Subsequent Ethanol Tolerance. J Food Sci 90(6):e70333

Reference Help

Abstract


Ethyl carbamate (EC) is a natural carcinogen widely found in fermented alcoholic beverages. The compound is mainly generated through the reaction of urea and citrulline with ethanol. The transcription factor Btn2p may affect arginine metabolism, and thus regulate EC in different fermentation systems. Therefore, in this study, we investigated the effects of Btn2p on arginine metabolism in Saccharomyces cerevisiae in different culture systems and analyzed the potential regulatory mechanisms of EC formation. In addition, we studied the ethanol tolerance of BTN2-modified yeast to determine its applicability in huangjiu fermentation and to provide a theoretical basis for subsequent studies. We found that BTN2 knockout inhibited two major EC precursors, and the inhibitory effect was better in mixed cultures with Pediococcus pentosaceus. In addition, BTN2 knockout promoted the activities of urease and ornithine transcarbamoylase, but reduced the activity of arginine deiminase, which led to the reduction of urea and citrulline concentrations. The growth conditions of BTN2-modified strains under different ethanol concentrations were also studied for future applications in huangjiu fermentation. The results showed that BTN2 overexpression promoted cell growth and increased ethanol tolerance, whereas BTN2 knockout reduced the ethanol tolerance of cell. The findings indicated that Btn2p was involved in arginine metabolism, possibly through the regulation of urea and citrulline metabolism, and BTN2-knockout strains can be used as a potential target for EC reduction.

Reference Type
Journal Article
Authors
Zhou H, Xia T, Chen T, Zhou A, Xia Q, Xiao G, Fang R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference