Reference: Okuhama S, et al. (2025) Investigation of Microbial Community Shifts under the Mizumoto Japanese Traditional Sake Brewing Process Using Chemical Analyses and High-throughput Sequencing. Microbes Environ 40(2)

Reference Help

Abstract


Over the past 10 centuries, sake brewing methods have been developed in stages, including doburoku, mizumoto, kimoto, yamahaimoto, and sokujyomoto. Mizumoto-sake is considered the oldest prototype. The brewing process involves lactic acid fermentation and multiple parallel saccharification and alcoholic fermentation by indigenous microbes, which has been operated based on a sense of craftsmanship. The processes involved lead to the creation of extreme conditions characterized by low pH levels and high alcohol concentrations. The characteristic feature of mizumoto-sake is that it begins with fermentation by indigenous lactic acid bacteria to produce acidic water for yeasts to ferment alcohol by inhibiting the growth of undesirable microbes. In the present study, we investigated changes in the microbial community and the transition of metabolites that affect taste and flavor during processes from the initiation of mizumoto-sake brewing to the final product. In the lactic acid fermentation phase, bacteria, including those in the genera Lactococcus, Leuconostoc, and Lactobacillus, produced lactic acid and contributed to the production of acidic water (pH of approximately 4) called soyashimizu. A heating process, known as "Anka", which increased the brewing temperature, then switched the relative abundance of 18S rRNA from 75.0% Pichia to 72.3% Saccharomycetaceae. Alcohol fermentation was accelerated by the Saccharomyces family (relative abundance: 89.8%), reaching alcohol concentrations >15%.

Reference Type
Journal Article
Authors
Okuhama S, Nakashima Y, Nakamoto T, Aoki M, Hirakata Y, Yamaguchi T, Kusube M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference