Reference: Sun J, et al. (2025) Metabolic engineering of Saccharomyces cerevisiae for de novo biosynthesis of hydroxytyrosol and salidroside. Appl Environ Microbiol e0071225

Reference Help

Abstract


Unlabelled: Hydroxytyrosol and salidroside are phenylethanol compounds with significant industrial applications but limited availability due to low-yield natural extraction and complex chemical synthesis. In this study, Saccharomyces cerevisiae was engineered to achieve efficient de novo biosynthesis of these compounds. A tyrosol-producing strain (ZYT1) was optimized to produce 571.8 mg/L tyrosol, which served as the yeast chassis cell for hydroxytyrosol synthesis. By integrating PaHpaB and EcHpaC, strain ZYHT1 produced 304.4 mg/L hydroxytyrosol in shake-flask fermentation, which increased to 677.6 mg/L in a 15 L bioreactor after auxotrophic repair. For salidroside production, glycosyltransferase RrU8GT33 was introduced into ZYT1, yielding strain ZYSAL1 with 48.4 mg/L salidroside. Enhancing UDP-glucose supply using truncated sucrose synthase (tGuSUS1) led to strain ZYSAL9+3, which achieved 1,021.0 mg/L in shake flasks and 18.9 g/L in fed-batch fermentation. This work demonstrates the scalable production of hydroxytyrosol and salidroside in yeast, providing a basis for industrial applications and advancing synthetic biology approaches for natural product biosynthesis.

Importance: Hydroxytyrosol and salidroside are valuable natural compounds with strong antioxidant, anti-inflammatory, and neuroprotective properties, widely used in pharmaceuticals, cosmetics, and health supplements. However, traditional extraction from plants is inefficient, and chemical synthesis is costly and environmentally unfriendly. In this study, we engineered Saccharomyces cerevisiae, a common yeast, to efficiently produce these compounds from simple carbon sources such as glucose and sucrose. By optimizing key biosynthetic pathways, improving cofactor supply, and enhancing sucrose metabolism, we achieved high production levels suitable for industrial applications. Our work provides a sustainable and scalable microbial platform for producing hydroxytyrosol and salidroside, reducing reliance on plant extraction and chemical synthesis. This research advances the field of microbial biotechnology by demonstrating how engineered yeast can serve as a green factory for valuable bioactive compounds, opening new possibilities for large-scale production and commercial use.

Reference Type
Journal Article
Authors
Sun J, Zhu L, Duan L, Li F, Guo S, Bian J, Yang L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference