Reference: Zhu X, et al. (2025) Artificial chromosome reorganization reveals high plasticity of the budding and fission yeast genomes. Genome Biol 26(1):229

Reference Help

Abstract


Background: The genome of a eukaryotic cell is usually organized on a set of chromosomes. Recently, karyotype engineering has been applied to various organisms, but whether and to what extent a naturally evolved genome can resist or tolerate massive artificial manipulations remains unexplored.

Results: Using unicellular yeast models of both Saccharomyces cerevisiae and Schizosaccharomyces pombe, we deliberately construct dozens of single-chromosome strains with different chromosome architectures. Three S. cerevisiae strains have the individual chromosomes fused into a single chromosome, but with the individual chromosomes in different orders. Eighteen S. cerevisiae strains have a single chromosome but with different centromeric sequences. Fifteen S. cerevisiae strains have a single chromosome with the centromere at different distances relative to the telomeres. Two S. pombe strains have a single, circular chromosome, and three strains have a single, linear chromosome with the centromere at different distances relative to the telomeres. All of these single-chromosome strains are viable, but the strains with an acrocentric or a telocentric chromosome have abnormal cell morphologies, and grow more slowly than those with a metacentric or sub-metacentric chromosome, and show increased genome instability with chromosome segregation abnormalities or genome diploidization.

Conclusion: The functional genomes of both the evolutionarily distant yeasts S. cerevisiae and S. pombe are highly tolerant of diversified genome organizations. The phenotypic abnormalities and increased genome instability of the acrocentric/telocentric single-chromosome yeasts suggest that yeasts with metacentric chromosomes have an evolutionary advantage.

Reference Type
Journal Article
Authors
Zhu X, Liu S, Ye T, Gu X, Pu F, Zhou Z, Wu ZJ, Zhou JQ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference