Reference: Kishkevich A, et al. (2025) YTK Display-and-Secrete: Screening for Optimal Protein Secretion Elements in Saccharomyces cerevisiae. ACS Synth Biol

Reference Help

Abstract


Engineering yeast to secrete target proteins requires searching for optimal combinations of promoters and signal peptides so that genes can be composed that give a high expression and efficient secretion. Most methods for this involve laborious, one-by-one assessments or require the use of enzymatic reporter proteins in order to achieve high-throughput capacity. Here, we introduce a novel modular method for the high throughput screening of yeast strains designed to secrete proteins of interest. Our approach integrates combinatorial DNA assembly, yeast surface display, flow cytometry, and nanopore DNA sequencing to facilitate rapid screening. Building on a widely used yeast toolkit (YTK) for modular cloning, our system creates surface display libraries with N- and C-terminal epitope tags by fast DNA assembly and genome-integration into Saccharomyces cerevisiae. Flow cytometry with fluorescently labeled epitope-binding antibodies identifies strains that secrete and display the most full-length protein and can rapidly sort these from low secretors. We demonstrate our system by optimizing the secretion of the enzyme beta-lactamase and several elastin-like polypeptides (ELPs), first identifying strains with modular genetic element combinations that give the best surface display and then validating that removal of the surface-display anchor protein in these strains gives a high target protein secretion. We then show how pooled long read sequencing of sorted cells can determine the effectiveness of numerous combinations of promoters and signal peptides for a target protein in a single experiment. The data sets from this offer new insights into an optimal element choice for efficient protein secretion and could train machine learning models.

Reference Type
Journal Article
Authors
Kishkevich A, Ciurkot K, Ellis T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference