Reference: Holland KL, et al. (2025) RNA Polymerase III Promoters Compatible with CRISPR Gene Regulation in Saccharomyces cerevisiae. ACS Synth Biol

Reference Help

Abstract


Saccharomyces cerevisiaeis a model organism commonly used to study gene regulation and function recently via CRISPR-(d)Cas9 technologies. Modulating the expression of multiple gene targets simultaneously is often important for synthetic biology and metabolic engineering applications and is crucial for genetic interaction studies. CRISPR-based systems can be used to target multiple genetic loci via expression of multiple single-guide RNAs (sgRNAs) in a single cell. However, there are currently a limited number of well-characterized RNA polymerase III (Pol III) promoters (e.g., pSNR52) for sgRNA expression in S. cerevisiae. Herein, we characterize 20 RNA Pol III promoters from different yeast species, from S. cerevisiae itself or from mammals, for their utility toward effectively mediating CRISPR activation and repression in S. cerevisiae. We show that the Pol III promoter cross-species functionality is impacted by promoter architecture and inclusion of core sequence motifs and that scaffold-mediated recruitment of multiple effectors can rescue poor promoter function in some contexts. Also, we highlight two Kluyveromyces lactis Pol III promoters that mediate CRISPR function as well as the gold standard S. cerevisiae pSNR52 and previously described tRNA promoters. Finally, we show that these non-native promoters enable effective simultaneous CRISPR-mediated activation and repression of endogenous S. cerevisiae genes to enhance resistance to hydrogen peroxide. The Pol III promoters described here highlight the cross-species compatibility of genetic units in simple eukaryotes and will be useful for synthetic biology and phenotype engineering applications in yeast.

Reference Type
Journal Article
Authors
Holland KL, Blancher I, McKesey M, Silas M, Gandhi S, Nickerson A, Jackson K, Blazeck J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference