Reference: Sarkar P, et al. (2025) Possible regulatory network and associated pathways governing the expression of ADH2 in Saccharomyces cerevisiae. Curr Genet 71(1):15

Reference Help

Abstract


With the day to day increase in energy consumption due to increase in urbanization production of bioethanol is highly in demand. At this point where the traditional methods are not able to suffice the demands due to its high cost and low productivity, new methods need to be developed. This review aims to understand the importance and the regulation of ADH2 in Saccharomyces cerevisiae because Adh2p is the only enzyme that initiates the reaction for the conversion of ethanol, the end product of fermentation to acetaldehyde. The effect of glucose on regulatory mechanisms of Alcohol dehydrogenase II (ADH2) with respect to Snf1 kinase, Target of Rapamycin (TOR) and CCR4 (Carbon Catabolite Repression) pathway on S. cerevisiae are discussed. Snf1 is a serine threonine kinase which is inactive in presence of high glucose concentrations and gets activated in low glucose environments which in turn affects the transcription of ADH2 by controlling the upstream TFs (Transcription Factors). TOR pathway is an essential signalling network that senses the availability of nutrients, mostly glucose and amino acids. This gets activated in presence of glucose. TORC1 regulates the transcription of ADH2 via various downstream transcription factors like Sch9p, Rim15, etc. Another global transcription factor CCR4, regulates ADH2 by acting directly upon its promoter region. The unique function of Adh2p in yeast metabolism, has directed numerous research work making it a vital target. Genetic manipulation of ADH2 gene has proved to be beneficial for food, bioethanol industry.

Reference Type
Journal Article | Review
Authors
Sarkar P, Nath R, Adhikary P, Bhattacharjee A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference