Reference: Liu M, et al. (2025) Optogenetic Control the Activity of Pyruvate Decarboxylase in Saccharomyces cerevisiae for Tunable Ethanol Production. ACS Synth Biol

Reference Help

Abstract


Saccharomyces cerevisiae is a widely used chassis in metabolic engineering. Due to the Crabtree effect, it preferentially produces ethanol under high-glucose conditions, limiting the synthesis of other valuable metabolites. Conventional metabolic engineering approaches typically rely on irreversible genetic modifications, making it insufficient for dynamic metabolic control. In contrast, optogenetics offers a reversible and tunable method for regulating cellular metabolism with high temporal precision. In this study, we engineered the pyruvate decarboxylase isozyme 1 (Pdc1) by inserting the photosensory modules (AsLOV2 and cpLOV2 domains) into rationally selected positions within the enzyme. Through a growth phenotype-based screening system, we identified two blue light-responsive variants, OptoPdc1D1 and OptoPdc1D2, which enable light-dependent control of enzymatic activity. Leveraging these OptoPdc1 variants, we developed opto-S. cerevisiae strains, MLy-9 and MLy-10, which demonstrated high efficiency in modulating both cell growth and ethanol production. These strains allow reliable regulation of ethanol biosynthesis in response to blue light, achieving a dynamic control range of approximately 20- to 120-fold. The opto-S. cerevisiae strains exhibited dose-dependent production in response to blue light intensity and pulse patterns, confirming their potential for precise metabolic control. This work establishes a novel protein-level strategy for regulating metabolic pathways in S. cerevisiae and introduces an effective method for controlling ethanol metabolism via optogenetic regulation.

Reference Type
Journal Article
Authors
Liu M, Chen Y, Yan J, Xiao Q, Zhao G, Zhang Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference