The mitochondrial genome (mtDNA) encodes essential subunits of the electron transport chain and ATP synthase. Mutations in these genes impair oxidative phosphorylation, compromise mitochondrial ATP production and cellular energy supply, and can cause mitochondrial diseases. These consequences highlight the importance of mtDNA quality control (mtDNA-QC), the process by which cells selectively maintain intact mtDNA to preserve respiratory function. Here, we developed a high-throughput flow cytometry assay for Saccharomyces cerevisiae to track mtDNA segregation in cell populations derived from heteroplasmic zygotes, in which wild-type (WT) mtDNA is fluorescently labeled and mutant mtDNA remains unlabeled. Using this approach, we observe purifying selection against mtDNA lacking subunits of complex III (COB), complex IV (COX2) or the ATP synthase (ATP6), under fermentative conditions that do not require respiratory activity. By integrating cytometric data with growth assays, qPCR-based mtDNA copy-number measurements, and simulations, we find that the decline of mtDNAΔatp6 in populations derived from heteroplasmic zygotes is largely explained by the combination of its reduced mtDNA copy number-biasing zygotes toward higher contributions of intact mtDNA-and the proliferative disadvantage of cells carrying this variant. In contrast, the loss of mtDNAΔcob and mtDNAΔcox2 cannot be explained by growth defects and copy-number asymmetries alone, indicating an additional intracellular selection against these mutant genomes when intact mtDNA is present. In heteroplasmic cells containing both intact and mutant mtDNA, fluorescent reporters revealed local reductions in ATP levels and membrane potential ([Formula: see text]) near mutant genomes, indicating spatial heterogeneity in mitochondrial physiology that reflects local mtDNA quality. Disruption of the respiratory chain by deletion of nuclear-encoded subunits (RIP1, COX4) abolished these physiological gradients and impaired mtDNA-QC, suggesting that local bioenergetic differences are required for selective recognition. Together, our findings support a model in which yeast cells assess local respiratory function as a proxy for mtDNA integrity, enabling intracellular selection for functional mitochondrial genomes.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
|---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
| Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
|---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
|---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
| Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Site | Modification | Modifier | Source | Reference |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
| Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
| Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
|---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
| Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
|---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
| Evidence ID | Analyze ID | File | Description |
|---|