Reference: Thoma F, et al. (2026) Local mitochondrial physiology defined by mtDNA quality guides purifying selection. PLoS Genet 22(1):e1011836

Reference Help

Abstract


The mitochondrial genome (mtDNA) encodes essential subunits of the electron transport chain and ATP synthase. Mutations in these genes impair oxidative phosphorylation, compromise mitochondrial ATP production and cellular energy supply, and can cause mitochondrial diseases. These consequences highlight the importance of mtDNA quality control (mtDNA-QC), the process by which cells selectively maintain intact mtDNA to preserve respiratory function. Here, we developed a high-throughput flow cytometry assay for Saccharomyces cerevisiae to track mtDNA segregation in cell populations derived from heteroplasmic zygotes, in which wild-type (WT) mtDNA is fluorescently labeled and mutant mtDNA remains unlabeled. Using this approach, we observe purifying selection against mtDNA lacking subunits of complex III (COB), complex IV (COX2) or the ATP synthase (ATP6), under fermentative conditions that do not require respiratory activity. By integrating cytometric data with growth assays, qPCR-based mtDNA copy-number measurements, and simulations, we find that the decline of mtDNAΔatp6 in populations derived from heteroplasmic zygotes is largely explained by the combination of its reduced mtDNA copy number-biasing zygotes toward higher contributions of intact mtDNA-and the proliferative disadvantage of cells carrying this variant. In contrast, the loss of mtDNAΔcob and mtDNAΔcox2 cannot be explained by growth defects and copy-number asymmetries alone, indicating an additional intracellular selection against these mutant genomes when intact mtDNA is present. In heteroplasmic cells containing both intact and mutant mtDNA, fluorescent reporters revealed local reductions in ATP levels and membrane potential ([Formula: see text]) near mutant genomes, indicating spatial heterogeneity in mitochondrial physiology that reflects local mtDNA quality. Disruption of the respiratory chain by deletion of nuclear-encoded subunits (RIP1, COX4) abolished these physiological gradients and impaired mtDNA-QC, suggesting that local bioenergetic differences are required for selective recognition. Together, our findings support a model in which yeast cells assess local respiratory function as a proxy for mtDNA integrity, enabling intracellular selection for functional mitochondrial genomes.

Reference Type
Journal Article
Authors
Thoma F, Hagen J, Rathberger R, Padovani F, Hörl D, Schmoller KM, Osman C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference