Bonomelli B, et al. (2023) Active Ras2 in mitochondria promotes regulated cell death in a cAMP/PKA pathway-dependent manner in budding yeast. FEBS Lett 597(2):298-308 PMID:36527174
Colombo S, et al. (2022) Fast detection of PKA activity in Saccharomyces cerevisiae cell population using AKAR fluorescence resonance energy transfer probes. Cell Signal 92:110262 PMID:35093533
Baroni MD, et al. (2020) In S. cerevisiae hydroxycitric acid antagonizes chronological aging and apoptosis regardless of citrate lyase. Apoptosis 25(9-10):686-696 PMID:32666259
Bonomelli B, et al. (2020) Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 523(1):130-134 PMID:31837801
Baroni MD, et al. (2018) Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. Microb Cell 5(7):344-356 PMID:29992130
Colombo S, et al. (2017) Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using Fluorescence Resonance Energy Transfer (FRET) probes. Biochem Biophys Res Commun 487(3):594-599 PMID:28433631
Amigoni L, et al. (2016) Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 16(3) PMID:26895787
Amigoni L, et al. (2015) The transcription factor Swi4 is target for PKA regulation of cell size at the G1 to S transition in Saccharomyces cerevisiae. Cell Cycle 14(15):2429-38 PMID:26046481
Rigamonti M, et al. (2015) Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane. Cell Calcium 57(2):57-68 PMID:25573187
Tisi R, et al. (2015) Monitoring yeast intracellular Ca2+ levels using an in vivo bioluminescence assay. Cold Spring Harb Protoc 2015(2):210-3 PMID:25646494
Colombo S and Martegani E (2014) Methods to study the Ras2 protein activation state and the subcellular localization of Ras-GTP in Saccharomyces cerevisiae. Methods Mol Biol 1120:391-405 PMID:24470038
Colombo S, et al. (2014) Evidence for adenylate cyclase as a scaffold protein for Ras2-Ira interaction in Saccharomyces cerevisie. Cell Signal 26(5):1147-54 PMID:24518043
Amigoni L, et al. (2013) Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Oxid Med Cell Longev 2013:678473 PMID:24089630
Broggi S, et al. (2013) Live-cell imaging of endogenous Ras-GTP shows predominant Ras activation at the plasma membrane and in the nucleus in Saccharomyces cerevisiae. Int J Biochem Cell Biol 45(2):384-94 PMID:23127800
Besozzi D, et al. (2012) The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J Bioinform Syst Biol 2012(1):10 PMID:22818197
Bouillet LE, et al. (2012) The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Cell Calcium 51(1):72-81 PMID:22153127
Pescini D, et al. (2012) Simulation of the Ras/cAMP/PKA pathway in budding yeast highlights the establishment of stable oscillatory states. Biotechnol Adv 30(1):99-107 PMID:21741466
Groppi S, et al. (2011) Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium 49(6):376-86 PMID:21511333
Leadsham JE, et al. (2009) Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. J Cell Sci 122(Pt 5):706-15 PMID:19208759
Busti S, et al. (2008) Functional coupling of the mammalian EGF receptor to the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae. Curr Genet 53(3):153-62 PMID:18183397
Cazzaniga P, et al. (2008) Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. J Biotechnol 133(3):377-85 PMID:18023904
Pereira MB, et al. (2008) Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 8(4):622-30 PMID:18399987
Paiardi C, et al. (2007) The large N-terminal domain of Cdc25 protein of the yeast Saccharomyces cerevisiae is required for glucose-induced Ras2 activation. FEMS Yeast Res 7(8):1270-5 PMID:17727662
Belotti F, et al. (2006) The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation. Microbiology (Reading) 152(Pt 4):1231-1242 PMID:16549685
Trópia MJ, et al. (2006) Calcium signaling and sugar-induced activation of plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Biochem Biophys Res Commun 343(4):1234-43 PMID:16581020
Colombo S, et al. (2004) Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 279(45):46715-22 PMID:15339905
Tisi R, et al. (2004) Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. Curr Genet 45(2):83-9 PMID:14618376
Bergsma JC, et al. (2001) PtdIns(4,5)P(2) and phospholipase C-independent Ins(1,4,5)P(3) signals induced by a nitrogen source in nitrogen-starved yeast cells. Biochem J 359(Pt 3):517-23 PMID:11672425
Rudoni S, et al. (2001) Role of guanine nucleotides in the regulation of the Ras/cAMP pathway in Saccharomyces cerevisiae. Biochim Biophys Acta 1538(2-3):181-9 PMID:11336789
Rudoni S, et al. (2000) The overexpression of the CDC25 gene of Saccharomyces cerevisiae causes a derepression of GAL system and an increase of GAL4 transcription. Int J Biochem Cell Biol 32(2):215-24 PMID:10687955
Anghileri P, et al. (1999) Chromosome separation and exit from mitosis in budding yeast: dependence on growth revealed by cAMP-mediated inhibition. Exp Cell Res 250(2):510-23 PMID:10413604
Vanoni M, et al. (1999) Characterization and properties of dominant-negative mutants of the ras-specific guanine nucleotide exchange factor CDC25(Mm). J Biol Chem 274(51):36656-62 PMID:10593969
Carrera V, et al. (1998) Mutations at position 1122 in the catalytic domain of the mouse ras-specific guanine nucleotide exchange factor CDC25Mm originate both loss-of-function and gain-of-function proteins. FEBS Lett 440(3):291-6 PMID:9872389
Coccetti P, et al. (1998) The PLC1 encoded phospholipase C in the yeast Saccharomyces cerevisiae is essential for glucose-induced phosphatidylinositol turnover and activation of plasma membrane H+-ATPase. Biochim Biophys Acta 1405(1-3):147-54 PMID:9784626
Martegani E, et al. (1997) Identification of gene encoding a putative RNA-helicase, homologous to SKI2, in chromosome VII of Saccharomyces cerevisiae. Yeast 13(4):391-7 PMID:9133744
Venturini M, et al. (1997) In Saccharomyces cerevisiae a short amino acid sequence facilitates excretion in the growth medium of periplasmic proteins. Mol Microbiol 23(5):997-1007 PMID:9076736
Jacquet E, et al. (1994) Properties of the catalytic domain of CDC25, a Saccharomyces cerevisiae GDP/GTP exchange factor: comparison of its activity on full-length and C-terminal truncated RAS2 proteins. Biochem Biophys Res Commun 199(2):497-503 PMID:8135791
Compagno C, et al. (1993) Copy number modulation in an autoselection system for stable plasmid maintenance in Saccharomyces cerevisiae. Biotechnol Prog 9(6):594-9 PMID:7764348
Martegani E, et al. (1993) Alteration of cell population structure due to cell lysis in Saccharomyces cerevisiae cells overexpressing the GAL4 gene. Yeast 9(6):575-82 PMID:8346673
Mauri I, et al. (1993) Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yeast. Mol Gen Genet 241(3-4):319-26 PMID:8246886
Jacquet E, et al. (1992) A mouse CDC25-like product enhances the formation of the active GTP complex of human ras p21 and Saccharomyces cerevisiae RAS2 proteins. J Biol Chem 267(34):24181-3 PMID:1447167
Martegani E, et al. (1992) Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J 11(6):2151-7 PMID:1376246
Porro D, et al. (1992) Lactose/whey utilization and ethanol production by transformed Saccharomyces cerevisiae cells. Biotechnol Bioeng 39(8):799-805 PMID:18601014
Compagno C, et al. (1991) The promoter of Saccharomyces cerevisiae FBA1 gene contains a single positive upstream regulatory element. FEBS Lett 293(1-2):97-100 PMID:1959676
Forlani N, et al. (1991) Posttranscriptional regulation of the expression of MET2 gene of Saccharomyces cerevisiae. Biochim Biophys Acta 1089(1):47-53 PMID:2025647
Frascotti G, et al. (1991) The overexpression of the 3' terminal region of the CDC25 gene of Saccharomyces cerevisiae causes growth inhibition and alteration of purine nucleotides pools. Biochim Biophys Acta 1089(2):206-12 PMID:1647210
Rodriguez F, et al. (1991) The sequence of 8.8 kb of yeast chromosome III cloned in lambda PM3270 contains an unusual long ORF (YCR601). Yeast 7(6):631-41 PMID:1837415
Frascotti G, et al. (1990) The glucose-induced polyphosphoinositides turnover in Saccharomyces cerevisiae is not dependent on the CDC25-RAS mediated signal transduction pathway. FEBS Lett 274(1-2):19-22 PMID:2174802
Vanoni M, et al. (1990) Overexpression of the CDC25 gene, an upstream element of the RAS/adenylyl cyclase pathway in Saccharomyces cerevisiae, allows immunological identification and characterization of its gene product. Biochem Biophys Res Commun 172(1):61-9 PMID:2121145
Vanoni M, et al. (1989) Secretion of Escherichia coli beta-galactosidase in Saccharomyces cerevisiae using the signal sequence from the glucoamylase-encoding STA2 gene. Biochem Biophys Res Commun 164(3):1331-8 PMID:2511842
Porro D, et al. (1988) Oscillations in continuous cultures of budding yeast: a segregated parameter analysis. Biotechnol Bioeng 32(4):411-7 PMID:18587737
Martegani E, et al. (1986) Molecular cloning and transcriptional analysis of the start gene CDC25 of Saccharomyces cerevisiae. EMBO J 5(9):2363-2369 PMID:16453707