Ji XX, et al. (2025) Response mechanism of ethanol-tolerant Saccharomyces cerevisiae strain ES-42 to increased ethanol during continuous ethanol fermentation. Microb Cell Fact 24(1):33 PMID:39885572
Li B, et al. (2022) Regulatory mechanism of Haa1p and Tye7p in Saccharomyces cerevisiae when fermenting mixed glucose and xylose with or without inhibitors. Microb Cell Fact 21(1):105 PMID:35643525
Wang L, et al. (2022) Screening novel genes by a comprehensive strategy to construct multiple stress-tolerant industrial Saccharomyces cerevisiae with prominent bioethanol production. Biotechnol Biofuels Bioprod 15(1):11 PMID:35418148
Li B, et al. (2021) Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis. Appl Environ Microbiol 87(10) PMID:33712428
Xie CY, et al. (2020) Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR. Microb Cell Fact 19(1):211 PMID:33187525
Yang BX, et al. (2020) Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. FEMS Yeast Res 20(8) PMID:33201998
Li YC, et al. (2019) Comparative Transcriptome Analysis of Recombinant Industrial Saccharomyces cerevisiae Strains with Different Xylose Utilization Pathways. Appl Biochem Biotechnol 189(3):1007-1019 PMID:31161382
Li YC, et al. (2017) Transcriptome changes in adaptive evolution of xylose-fermenting industrial Saccharomyces cerevisiae strains with δ-integration of different xylA genes. Appl Microbiol Biotechnol 101(20):7741-7753 PMID:28900684
Li YC, et al. (2017) Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation. Braz J Microbiol 48(4):791-800 PMID:28629968
Wang YF, et al. (2017) Production of ethanol from kitchen waste by using flocculating Saccharomyces cerevisiae KF-7. Environ Technol 38(3):316-325 PMID:27241454
Li YC, et al. (2016) Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Appl Microbiol Biotechnol 100(3):1531-1542 PMID:26603762
Zeng WY, et al. (2016) Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources. AMB Express 6(1):51 PMID:27485516
Li YC, et al. (2014) Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnol Lett 36(10):2011-21 PMID:24966040
Mitsumasu K, et al. (2014) Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating. J Biosci Bioeng 118(6):689-95 PMID:24958128
An MZ, et al. (2011) Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol Lett 33(7):1367-74 PMID:21380777
Sun ZY, et al. (2011) Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresour Technol 102(23):10929-35 PMID:21974887
Tang YQ, et al. (2010) Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. J Biosci Bioeng 109(1):41-6 PMID:20129080