Primary Literature
TEXT HERE
- Robledo-Ortiz CI, et al. (2012) Isolation and functional characterization of Sporothrix schenckii ROT2, the encoding gene for the endoplasmic reticulum glucosidase II. Fungal Biol 116(8):910-8 PMID: 22862919
- Clerc S, et al. (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184(1):159-72 PMID: 19124653
- Quinn RP, et al. (2009) A novel role for Gtb1p in glucose trimming of N-linked glycans. Glycobiology 19(12):1408-16 PMID: 19542522
- Mora-Montes HM, et al. (2007) Endoplasmic reticulum alpha-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell 6(12):2184-93 PMID: 17933909
- Welsh LM, et al. (2006) Genetic and molecular interactions of the Erv41p-Erv46p complex involved in transport between the endoplasmic reticulum and Golgi complex. J Cell Sci 119(Pt 22):4730-40 PMID: 17077122
- Wilkinson BM, et al. (2006) Yeast GTB1 encodes a subunit of glucosidase II required for glycoprotein processing in the endoplasmic reticulum. J Biol Chem 281(10):6325-33 PMID: 16373354
- Schirawski J, et al. (2005) Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis. Plant Cell 17(12):3532-43 PMID: 16272431
- Ziak M, et al. (2001) Two isoforms of trimming glucosidase II exist in mammalian tissues and cell lines but not in yeast and insect cells. Biochem Biophys Res Commun 280(1):363-7 PMID: 11162524
- Hirano K, et al. (2000) N-linked oligosaccharide processing enzyme glucosidase II produces 1,5-anhydrofructose as a side product. Glycobiology 10(12):1283-9 PMID: 11159920
- Pelletier MF, et al. (2000) The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 10(8):815-27 PMID: 10929008
- Castro O, et al. (1999) Uridine diphosphate-glucose transport into the endoplasmic reticulum of Saccharomyces cerevisiae: in vivo and in vitro evidence. Mol Biol Cell 10(4):1019-30 PMID: 10198054
- Herscovics A (1999) Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta 1426(2):275-85 PMID: 9878780
- Bickle M, et al. (1998) Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J 17(8):2235-45 PMID: 9545237
- Jakob CA, et al. (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142(5):1223-33 PMID: 9732283
- Jakob CA, et al. (1998) Genetic tailoring of N-linked oligosaccharides: the role of glucose residues in glycoprotein processing of Saccharomyces cerevisiae in vivo. Glycobiology 8(2):155-64 PMID: 9451025
- Simons JF, et al. (1998) Cell wall 1,6-beta-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. EMBO J 17(2):396-405 PMID: 9430631
- Freeze HH, et al. (1997) Consequences of disrupting the gene that encodes alpha-glucosidase II in the N-linked oligosaccharide biosynthesis pathway of Dictyostelium discoideum. Dev Genet 21(3):177-86 PMID: 9397534
- Trombetta ES, et al. (1996) Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J Biol Chem 271(44):27509-16 PMID: 8910335
- Runge KW and Robbins PW (1986) A new yeast mutation in the glucosylation steps of the asparagine-linked glycosylation pathway. Formation of a novel asparagine-linked oligosaccharide containing two glucose residues. J Biol Chem 261(33):15582-90 PMID: 3536907