Primary Literature
TEXT HERE
- Beißel C, et al. (2019) Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3. Nucleic Acids Res 47(9):4798-4813 PMID: 30873535
- Denis CL, et al. (2018) Defining the protein complexome of translation termination factor eRF1: Identification of four novel eRF1-containing complexes that range from 20S to 57S in size. Proteins 86(2):177-191 PMID: 29139201
- Preis A, et al. (2014) Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep 8(1):59-65 PMID: 25001285
- Shoemaker CJ, et al. (2010) Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330(6002):369-72 PMID: 20947765
- Akhmaloka, et al. (2008) Mutation at tyrosine in AMLRY (GILRY like) motif of yeast eRF1 on nonsense codons suppression and binding affinity to eRF3. Int J Biol Sci 4(2):87-95 PMID: 18463713
- Kobayashi T, et al. (2004) The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J Biol Chem 279(44):45693-700 PMID: 15337765
- Eurwilaichitr L, et al. (1999) The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol 32(3):485-96 PMID: 10320572
- Paushkin SV, et al. (1997) Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol 17(5):2798-805 PMID: 9111351
- Stansfield I, et al. (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14(17):4365-73 PMID: 7556078