Primary Literature
TEXT HERE
- Woo H, et al. (2024) N-terminal acetylation of Set1-COMPASS fine-tunes H3K4 methylation patterns. Sci Adv 10(28):eadl6280 PMID: 38996018
- Knorr AG, et al. (2023) The dynamic architecture of Map1- and NatB-ribosome complexes coordinates the sequential modifications of nascent polypeptide chains. PLoS Biol 21(4):e3001995 PMID: 37079644
- Friedrich UA, et al. (2021) N<sup>α</sup>-terminal acetylation of proteins by NatA and NatB serves distinct physiological roles in Saccharomyces cerevisiae. Cell Rep 34(5):108711 PMID: 33535049
- Kubota M and Okamoto K (2021) The protein N-terminal acetyltransferase A complex contributes to yeast mitophagy via promoting expression and phosphorylation of Atg32. J Biochem 170(2):175-182 PMID: 34115119
- Grunwald S, et al. (2020) Divergent architecture of the heterotrimeric NatC complex explains N-terminal acetylation of cognate substrates. Nat Commun 11(1):5506 PMID: 33139728
- Knorr AG, et al. (2019) Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nat Struct Mol Biol 26(1):35-39 PMID: 30559462
- Cheng H, et al. (2018) Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 102(5):985-994 PMID: 29656860
- Linster E and Wirtz M (2018) N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses. J Exp Bot 69(19):4555-4568 PMID: 29945174
- Varland S and Arnesen T (2018) Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae. BMC Res Notes 11(1):404 PMID: 29929531
- Osberg C, et al. (2016) Microscopy-based Saccharomyces cerevisiae complementation model reveals functional conservation and redundancy of N-terminal acetyltransferases. Sci Rep 6:31627 PMID: 27555049
- Eiyama A and Okamoto K (2015) Protein N-terminal Acetylation by the NatA Complex Is Critical for Selective Mitochondrial Degradation. J Biol Chem 290(41):25034-44 PMID: 26296886
- Van Damme P, et al. (2015) N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases. Proteomics 15(14):2436-46 PMID: 25886145
- Van Damme P, et al. (2014) A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant. Mol Cell Proteomics 13(8):2031-41 PMID: 24408909
- Foyn H, et al. (2013) Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo. Mol Cell Proteomics 12(1):42-54 PMID: 23043182
- Wan K, et al. (2013) Nα-acetyltransferase NatA is involved in ribosome synthesis in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 77(3):631-8 PMID: 23470771
- Hole K, et al. (2011) The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS One 6(9):e24713 PMID: 21935442
- Arnesen T, et al. (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci U S A 106(20):8157-62 PMID: 19420222
- Evjenth R, et al. (2009) Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. J Biol Chem 284(45):31122-9 PMID: 19744929
- Pezza JA, et al. (2009) The NatA acetyltransferase couples Sup35 prion complexes to the [PSI+] phenotype. Mol Biol Cell 20(3):1068-80 PMID: 19073888
- Polevoda B, et al. (2009) A synopsis of eukaryotic Nalpha-terminal acetyltransferases: nomenclature, subunits and substrates. BMC Proc 3 Suppl 6(Suppl 6):S2 PMID: 19660095
- Perrot M, et al. (2008) Sequence requirements for Nalpha-terminal acetylation of yeast proteins by NatA. Yeast 25(7):513-27 PMID: 18615858
- Starheim KK, et al. (2008) Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. Biochem J 415(2):325-31 PMID: 18570629
- van Welsem T, et al. (2008) Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core. Mol Cell Biol 28(11):3861-72 PMID: 18391024
- Raue U, et al. (2007) Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J Biol Chem 282(11):7809-16 PMID: 17229726
- Arnesen T, et al. (2006) Cloning and characterization of hNAT5/hSAN: an evolutionarily conserved component of the NatA protein N-alpha-acetyltransferase complex. Gene 371(2):291-5 PMID: 16507339
- Han SH, et al. (2006) Expression, crystallization and preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins from Thermoplasma acidophilum. Acta Crystallogr Sect F Struct Biol Cryst Commun 62(Pt 11):1127-30 PMID: 17077495
- Dihazi H, et al. (2005) Lysine 3 acetylation regulates the phosphorylation of yeast 6-phosphofructo-2-kinase under hypo-osmotic stress. Biol Chem 386(9):895-900 PMID: 16164414
- Kiemer L, et al. (2005) NetAcet: prediction of N-terminal acetylation sites. Bioinformatics 21(7):1269-70 PMID: 15539450
- Geissenhöner A, et al. (2004) Dependence of ORC silencing function on NatA-mediated Nalpha acetylation in Saccharomyces cerevisiae. Mol Cell Biol 24(23):10300-12 PMID: 15542839
- Wang X, et al. (2004) Importance of the Sir3 N terminus and its acetylation for yeast transcriptional silencing. Genetics 168(1):547-51 PMID: 15454564
- Gautschi M, et al. (2003) The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol Cell Biol 23(20):7403-14 PMID: 14517307
- Kimura Y, et al. (2003) N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Arch Biochem Biophys 409(2):341-8 PMID: 12504901
- Molin M, et al. (2003) Fragmentation of dihydroxyacetone kinase 1 from Saccharomyces cerevisiae indicates a two-domain structure. Proteomics 3(5):752-63 PMID: 12748953
- Polevoda B and Sherman F (2003) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol 325(4):595-622 PMID: 12507466
- Polevoda B and Sherman F (2003) Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem Biophys Res Commun 308(1):1-11 PMID: 12890471
- Polevoda B and Sherman F (2001) NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J Biol Chem 276(23):20154-9 PMID: 11274203
- Arnold RJ, et al. (1999) The action of N-terminal acetyltransferases on yeast ribosomal proteins. J Biol Chem 274(52):37035-40 PMID: 10601260