Primary Literature
TEXT HERE
- Li N, et al. (2024) Parental histone transfer caught at the replication fork. Nature 627(8005):890-897 PMID: 38448592
- Reuter LM, et al. (2024) MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing. Nat Commun 15(1):7306 PMID: 39181881
- Miller CLW and Winston F (2023) The conserved histone chaperone Spt6 is strongly required for DNA replication and genome stability. Cell Rep 42(3):112264 PMID: 36924499
- Sánchez H, et al. (2023) A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint. Nat Commun 14(1):6735 PMID: 37872142
- Wang X, et al. (2023) The N-terminus of Spt16 anchors FACT to MCM2-7 for parental histone recycling. Nucleic Acids Res 51(21):11549-11567 PMID: 37850662
- Zhang A, et al. (2023) Changing protein-DNA interactions promote ORC binding-site exchange during replication origin licensing. Proc Natl Acad Sci U S A 120(30):e2305556120 PMID: 37463200
- Cheng J, et al. (2022) Structural Insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase. Nat Commun 13(1):1396 PMID: 35296675
- Gasparayan H, et al. (2022) Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint. Curr Genet 68(2):165-179 PMID: 35150303
- Li S, et al. (2022) Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. Nat Commun 13(1):4947 PMID: 35999198
- Saleh A, et al. (2022) The structural basis of Cdc7-Dbf4 kinase dependent targeting and phosphorylation of the MCM2-7 double hexamer. Nat Commun 13(1):2915 PMID: 35614055
- Sanders J, et al. (2022) Validation of a high throughput screening assay to identify small molecules that target the eukaryotic replicative helicase. SLAS Discov 27(4):229-241 PMID: 35058181
- De Jesús-Kim L, et al. (2021) DDK regulates replication initiation by controlling the multiplicity of Cdc45-GINS binding to Mcm2-7. Elife 10 PMID: 33616038
- Dukaj L and Rhind N (2021) The capacity of origins to load MCM establishes replication timing patterns. PLoS Genet 17(3):e1009467 PMID: 33764973
- Gupta S, et al. (2021) A helicase-tethered ORC flip enables bidirectional helicase loading. Elife 10 PMID: 34882090
- Sánchez H, et al. (2021) DNA replication origins retain mobile licensing proteins. Nat Commun 12(1):1908 PMID: 33772005
- Yoshimura A, et al. (2021) Functional control of Eco1 through the MCM complex in sister chromatid cohesion. Gene 784:145584 PMID: 33753149
- Denkiewicz-Kruk M, et al. (2020) Recombination and Pol ζ Rescue Defective DNA Replication upon Impaired CMG Helicase-Pol ε Interaction. Int J Mol Sci 21(24) PMID: 33322195
- Hoggard T, et al. (2020) Sir2 mitigates an intrinsic imbalance in origin licensing efficiency between early- and late-replicating euchromatin. Proc Natl Acad Sci U S A 117(25):14314-14321 PMID: 32513739
- Miller TCR, et al. (2019) Mechanism of head-to-head MCM double-hexamer formation revealed by cryo-EM. Nature 575(7784):704-710 PMID: 31748745
- Hoggard TA, et al. (2018) Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. PLoS Genet 14(5):e1007418 PMID: 29795547
- Yamamoto K, et al. (2018) CDK phosphorylation regulates Mcm3 degradation in budding yeast. Biochem Biophys Res Commun 506(3):680-684 PMID: 30376991
- Abid Ali F, et al. (2017) Cryo-EM structure of a licensed DNA replication origin. Nat Commun 8(1):2241 PMID: 29269875
- Frigola J, et al. (2017) Cdt1 stabilizes an open MCM ring for helicase loading. Nat Commun 8:15720 PMID: 28643783
- Seoane AI and Morgan DO (2017) Firing of Replication Origins Frees Dbf4-Cdc7 to Target Eco1 for Destruction. Curr Biol 27(18):2849-2855.e2 PMID: 28918948
- Huang Y, et al. (2016) A Role of hIPI3 in DNA Replication Licensing in Human Cells. PLoS One 11(4):e0151803 PMID: 27057756
- Li N, et al. (2015) Structure of the eukaryotic MCM complex at 3.8 Å. Nature 524(7564):186-91 PMID: 26222030
- Hiraga S, et al. (2014) Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev 28(4):372-83 PMID: 24532715
- Bell SD and Botchan MR (2013) The minichromosome maintenance replicative helicase. Cold Spring Harb Perspect Biol 5(11):a012807 PMID: 23881943
- Nguyen PV, et al. (2013) Identifying conserved protein complexes between species by constructing interolog networks. BMC Bioinformatics 14 Suppl 16(Suppl 16):S8 PMID: 24564762
- Bagley BN, et al. (2012) A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis. PLoS Genet 8(11):e1003034 PMID: 23133403
- Nguyen T, et al. (2012) Interactions of the human MCM-BP protein with MCM complex components and Dbf4. PLoS One 7(4):e35931 PMID: 22540012
- Wu R, et al. (2012) Cdt1p, through its interaction with Mcm6p, is required for the formation, nuclear accumulation and chromatin loading of the MCM complex. J Cell Sci 125(Pt 1):209-19 PMID: 22250202
- Bryant JA and Aves SJ (2011) Initiation of DNA replication: functional and evolutionary aspects. Ann Bot 107(7):1119-26 PMID: 21508040
- Bochman ML and Schwacha A (2010) The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate'. Nucleic Acids Res 38(18):6078-88 PMID: 20484375
- Hoang ML, et al. (2007) Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae. Mol Cell Biol 27(21):7594-602 PMID: 17724082
- Sheu YJ and Stillman B (2006) Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell 24(1):101-13 PMID: 17018296
- Blow JJ and Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6(6):476-86 PMID: 15928711
- Chen YJ, et al. (2005) Structural polymorphism of Methanothermobacter thermautotrophicus MCM. J Mol Biol 346(2):389-94 PMID: 15670590
- Bailis JM and Forsburg SL (2004) MCM proteins: DNA damage, mutagenesis and repair. Curr Opin Genet Dev 14(1):17-21 PMID: 15108800
- Nishitani H and Lygerou Z (2004) DNA replication licensing. Front Biosci 9:2115-32 PMID: 15353274
- Cheng IH, et al. (2002) Mcm3 is polyubiquitinated during mitosis before establishment of the pre-replication complex. J Biol Chem 277(44):41706-14 PMID: 12200430
- Fujita M, et al. (2002) Nuclear organization of DNA replication initiation proteins in mammalian cells. J Biol Chem 277(12):10354-61 PMID: 11779870
- Holland L, et al. (2002) Distinct parts of minichromosome maintenance protein 2 associate with histone H3/H4 and RNA polymerase II holoenzyme. Eur J Biochem 269(21):5192-202 PMID: 12392551
- Nishitani H and Lygerou Z (2002) Control of DNA replication licensing in a cell cycle. Genes Cells 7(6):523-34 PMID: 12059957
- Takahashi N, et al. (2002) Functions of sensor 1 and sensor 2 regions of Saccharomyces cerevisiae Cdc6p in vivo and in vitro. J Biol Chem 277(18):16033-40 PMID: 11827963
- Lei M and Tye BK (2001) Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci 114(Pt 8):1447-54 PMID: 11282021
- Schepers A and Diffley JF (2001) Mutational analysis of conserved sequence motifs in the budding yeast Cdc6 protein. J Mol Biol 308(4):597-608 PMID: 11350163
- Schwacha A and Bell SP (2001) Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell 8(5):1093-104 PMID: 11741544
- Labib K, et al. (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288(5471):1643-7 PMID: 10834843
- Madine MA, et al. (2000) The roles of the MCM, ORC, and Cdc6 proteins in determining the replication competence of chromatin in quiescent cells. J Struct Biol 129(2-3):198-210 PMID: 10806069
- Sclafani RA (2000) Cdc7p-Dbf4p becomes famous in the cell cycle. J Cell Sci 113 ( Pt 12)(12):2111-7 PMID: 10825284
- Sherman DA, et al. (1998) Multiple domains of fission yeast Cdc19p (MCM2) are required for its association with the core MCM complex. Mol Biol Cell 9(7):1833-45 PMID: 9658174
- Sible JC, et al. (1998) Developmental regulation of MCM replication factors in Xenopus laevis. Curr Biol 8(6):347-50 PMID: 9512418
- Dalton S and Hopwood B (1997) Characterization of Cdc47p-minichromosome maintenance complexes in Saccharomyces cerevisiae: identification of Cdc45p as a subunit. Mol Cell Biol 17(10):5867-75 PMID: 9315644
- Romanowski P, et al. (1996) The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr Biol 6(11):1416-25 PMID: 8939603
- Romanowski P, et al. (1996) XMCM7, a novel member of the Xenopus MCM family, interacts with XMCM3 and colocalizes with it throughout replication. Proc Natl Acad Sci U S A 93(19):10189-94 PMID: 8816774