Primary Literature
TEXT HERE
- Mayle R, et al. (2024) DNA polymerase ζ has robust reverse transcriptase activity relative to other cellular DNA polymerases. J Biol Chem 300(12):107918 PMID: 39454951
- Zheng F, et al. (2024) Structure of the PCNA unloader Elg1-RFC. Sci Adv 10(9):eadl1739 PMID: 38427736
- Acharya N, et al. (2023) Yeast 9-1-1 complex acts as a sliding clamp for DNA synthesis by DNA polymerase ε. J Biol Chem 299(1):102727 PMID: 36410434
- Gaubitz C, et al. (2022) Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader. Elife 11 PMID: 35179493
- Liu X, et al. (2022) A second DNA binding site on RFC facilitates clamp loading at gapped or nicked DNA. Elife 11 PMID: 35731107
- Schrecker M, et al. (2022) Multistep loading of a DNA sliding clamp onto DNA by replication factor C. Elife 11 PMID: 35939393
- Hamza A, et al. (2021) Modeling DNA trapping of anticancer therapeutic targets using missense mutations identifies dominant synthetic lethal interactions. Proc Natl Acad Sci U S A 118(14) PMID: 33782138
- Cannavo E, et al. (2020) Regulation of the MLH1-MLH3 endonuclease in meiosis. Nature 586(7830):618-622 PMID: 32814904
- Lee KY and Park SH (2020) Eukaryotic clamp loaders and unloaders in the maintenance of genome stability. Exp Mol Med 52(12):1948-1958 PMID: 33339954
- Örd M, et al. (2019) Cyclin-Specific Docking Mechanisms Reveal the Complexity of M-CDK Function in the Cell Cycle. Mol Cell 75(1):76-89.e3 PMID: 31101497
- Lev I, et al. (2017) A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5. Genetics 206(3):1683-1697 PMID: 28476868
- Liu J, et al. (2017) Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism. J Biol Chem 292(38):15892-15906 PMID: 28808059
- Schauer GD and O'Donnell ME (2017) Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. Proc Natl Acad Sci U S A 114(4):675-680 PMID: 28069954
- Sisakova A, et al. (2017) Role of PCNA and RFC in promoting Mus81-complex activity. BMC Biol 15(1):90 PMID: 28969641
- Johnson C, et al. (2016) PCNA Retention on DNA into G2/M Phase Causes Genome Instability in Cells Lacking Elg1. Cell Rep 16(3):684-95 PMID: 27373149
- Kupiec M (2016) Alternative clamp loaders/unloaders. FEMS Yeast Res 16(7) PMID: 27664980
- Kadyrova LY, et al. (2015) Evidence that the DNA mismatch repair system removes 1-nucleotide Okazaki fragment flaps. J Biol Chem 290(40):24051-65 PMID: 26224637
- Kubota T, et al. (2015) Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation. Cell Rep 12(5):774-87 PMID: 26212319
- Smith CE, et al. (2015) Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System. J Biol Chem 290(35):21580-90 PMID: 26170454
- Bowen N, et al. (2013) Reconstitution of long and short patch mismatch repair reactions using Saccharomyces cerevisiae proteins. Proc Natl Acad Sci U S A 110(46):18472-7 PMID: 24187148
- Kubota T, et al. (2013) Is PCNA unloading the central function of the Elg1/ATAD5 replication factor C-like complex? Cell Cycle 12(16):2570-9 PMID: 23907118
- Kubota T, et al. (2013) The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol Cell 50(2):273-80 PMID: 23499004
- Lormand JD, et al. (2013) DNA polymerase δ stalls on telomeric lagging strand templates independently from G-quadruplex formation. Nucleic Acids Res 41(22):10323-33 PMID: 24038470
- Sun J, et al. (2013) Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol 20(8):944-51 PMID: 23851460
- Ulrich HD (2013) New insights into replication clamp unloading. J Mol Biol 425(23):4727-32 PMID: 23688817
- Gali H, et al. (2012) Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res 40(13):6049-59 PMID: 22457066
- Marzahn MR and Bloom LB (2012) Improved solubility of replication factor C (RFC) Walker A mutants. Protein Expr Purif 83(2):135-44 PMID: 22469630
- Sakato M, et al. (2012) ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction. J Mol Biol 416(2):176-91 PMID: 22197378
- Sakato M, et al. (2012) A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA. J Mol Biol 416(2):163-75 PMID: 22197374
- Thompson JA, et al. (2012) Replication factor C is a more effective proliferating cell nuclear antigen (PCNA) opener than the checkpoint clamp loader, Rad24-RFC. J Biol Chem 287(3):2203-9 PMID: 22115746
- Zhou Y and Hingorani MM (2012) Impact of individual proliferating cell nuclear antigen-DNA contacts on clamp loading and function on DNA. J Biol Chem 287(42):35370-35381 PMID: 22902629
- Kumar R, et al. (2010) Stepwise loading of yeast clamp revealed by ensemble and single-molecule studies. Proc Natl Acad Sci U S A 107(46):19736-41 PMID: 21041673
- Tainer JA, et al. (2010) Recognition of the ring-opened state of proliferating cell nuclear antigen by replication factor C promotes eukaryotic clamp-loading. J Am Chem Soc 132(21):7372-8 PMID: 20455582
- Chen S, et al. (2009) Mechanism of ATP-driven PCNA clamp loading by S. cerevisiae RFC. J Mol Biol 388(3):431-42 PMID: 19285992
- Cho IT, et al. (2009) Human replication factor C stimulates flap endonuclease 1. J Biol Chem 284(16):10387-99 PMID: 19208620
- Duncker BP, et al. (2009) The origin recognition complex protein family. Genome Biol 10(3):214 PMID: 19344485
- Gómez-González B, et al. (2009) The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol Cell Biol 29(19):5203-13 PMID: 19651896
- Grandin N and Charbonneau M (2009) Telomerase- and Rad52-independent immortalization of budding yeast by an inherited-long-telomere pathway of telomeric repeat amplification. Mol Cell Biol 29(4):965-85 PMID: 19047370
- Pryde F, et al. (2009) H3 k36 methylation helps determine the timing of cdc45 association with replication origins. PLoS One 4(6):e5882 PMID: 19521516
- Miller A, et al. (2008) Proliferating cell nuclear antigen and ASF1 modulate silent chromatin in Saccharomyces cerevisiae via lysine 56 on histone H3. Genetics 179(2):793-809 PMID: 18558650
- Song W, et al. (2007) A conserved physical and functional interaction between the cell cycle checkpoint clamp loader and DNA ligase I of eukaryotes. J Biol Chem 282(31):22721-30 PMID: 17561505
- Haracska L, et al. (2006) Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc Natl Acad Sci U S A 103(17):6477-82 PMID: 16611731
- Majka J, et al. (2006) Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions. J Biol Chem 281(38):27855-61 PMID: 16864589
- Yao NY, et al. (2006) Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. J Biol Chem 281(25):17528-17539 PMID: 16608854
- Zhuang Z, et al. (2006) The structure of a ring-opened proliferating cell nuclear antigen-replication factor C complex revealed by fluorescence energy transfer. Proc Natl Acad Sci U S A 103(8):2546-51 PMID: 16476998
- Aroya SB and Kupiec M (2005) The Elg1 replication factor C-like complex: a novel guardian of genome stability. DNA Repair (Amst) 4(4):409-17 PMID: 15725622
- Bylund GO and Burgers PM (2005) Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol 25(13):5445-55 PMID: 15964801
- Franco AA, et al. (2005) Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 19(11):1365-75 PMID: 15901673
- Garg P and Burgers PM (2005) Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc Natl Acad Sci U S A 102(51):18361-6 PMID: 16344468
- Johnson A and O'Donnell M (2005) Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74:283-315 PMID: 15952889
- Majka J and Burgers PM (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78:227-60 PMID: 15210332
- Majka J, et al. (2004) Requirement for ATP by the DNA damage checkpoint clamp loader. J Biol Chem 279(20):20921-6 PMID: 15014082
- Mayer ML, et al. (2004) Identification of protein complexes required for efficient sister chromatid cohesion. Mol Biol Cell 15(4):1736-45 PMID: 14742714
- Petronczki M, et al. (2004) Sister-chromatid cohesion mediated by the alternative RF-CCtf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-alpha-associated protein Ctf4 is essential for chromatid disjunction during meiosis II. J Cell Sci 117(Pt 16):3547-59 PMID: 15226378
- Smolikov S, et al. (2004) ELG1, a regulator of genome stability, has a role in telomere length regulation and in silencing. Proc Natl Acad Sci U S A 101(6):1656-61 PMID: 14745004
- Bellaoui M, et al. (2003) Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J 22(16):4304-13 PMID: 12912927
- Ben-Aroya S, et al. (2003) ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C. Proc Natl Acad Sci U S A 100(17):9906-11 PMID: 12909721
- Ellison V and Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol 1(2):E33 PMID: 14624239
- Finkelstein J, et al. (2003) Overproduction and analysis of eukaryotic multiprotein complexes in Escherichia coli using a dual-vector strategy. Anal Biochem 319(1):78-87 PMID: 12842110
- Kenna MA and Skibbens RV (2003) Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes. Mol Cell Biol 23(8):2999-3007 PMID: 12665596
- Majka J and Burgers PM (2003) Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc Natl Acad Sci U S A 100(5):2249-54 PMID: 12604797
- Merkle CJ, et al. (2003) Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment. J Biol Chem 278(32):30051-6 PMID: 12766176
- Pelletier R, et al. (2003) Replication and expansion of trinucleotide repeats in yeast. Mol Cell Biol 23(4):1349-57 PMID: 12556494
- Yao N, et al. (2003) Replication factor C clamp loader subunit arrangement within the circular pentamer and its attachment points to proliferating cell nuclear antigen. J Biol Chem 278(50):50744-53 PMID: 14530260
- Zou L, et al. (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci U S A 100(24):13827-32 PMID: 14605214
- Hingorani MM and Coman MM (2002) On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication. J Biol Chem 277(49):47213-24 PMID: 12370190
- Ionescu CN, et al. (2002) Monomeric yeast PCNA mutants are defective in interacting with and stimulating the ATPase activity of RFC. Biochemistry 41(43):12975-85 PMID: 12390024
- Matsumiya S, et al. (2002) Physical interaction between proliferating cell nuclear antigen and replication factor C from Pyrococcus furiosus. Genes Cells 7(9):911-22 PMID: 12296822
- Podust VN, et al. (2002) Reconstitution of human DNA polymerase delta using recombinant baculoviruses: the p12 subunit potentiates DNA polymerizing activity of the four-subunit enzyme. J Biol Chem 277(6):3894-901 PMID: 11711545
- Unk I, et al. (2002) Stimulation of 3'-->5' exonuclease and 3'-phosphodiesterase activities of yeast apn2 by proliferating cell nuclear antigen. Mol Cell Biol 22(18):6480-6 PMID: 12192046
- Venclovas C, et al. (2002) Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process. Protein Sci 11(10):2403-16 PMID: 12237462
- Vogelauer M, et al. (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10(5):1223-33 PMID: 12453428
- Gomes XV and Burgers PM (2001) ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem 276(37):34768-75 PMID: 11432853
- Gomes XV, et al. (2001) ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J Biol Chem 276(37):34776-83 PMID: 11432856
- Jaffe AB and Jongens TA (2001) Structure-specific abnormalities associated with mutations in a DNA replication accessory factor in Drosophila. Dev Biol 230(2):161-76 PMID: 11161570
- Jeruzalmi D, et al. (2001) Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106(4):429-41 PMID: 11525729
- Kawabe Yi, et al. (2001) A novel protein interacts with the Werner's syndrome gene product physically and functionally. J Biol Chem 276(23):20364-9 PMID: 11301316
- Kim HS and Brill SJ (2001) Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae. Mol Cell Biol 21(11):3725-37 PMID: 11340166
- Naiki T, et al. (2001) Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol Cell Biol 21(17):5838-45 PMID: 11486023
- Ola A, et al. (2001) Human-Saccharomyces cerevisiae proliferating cell nuclear antigen hybrids: oligomeric structure and functional characterization using in vitro DNA replication. J Biol Chem 276(13):10168-77 PMID: 11094057
- Schmidt SL, et al. (2001) ATP utilization by yeast replication factor C. IV. RFC ATP-binding mutants show defects in DNA replication, DNA repair, and checkpoint regulation. J Biol Chem 276(37):34792-800 PMID: 11549622
- Schmidt SL, et al. (2001) ATP utilization by yeast replication factor C. III. The ATP-binding domains of Rfc2, Rfc3, and Rfc4 are essential for DNA recognition and clamp loading. J Biol Chem 276(37):34784-91 PMID: 11432854
- Beckwith W and McAlear MA (2000) Allele-specific interactions between the yeast RFC1 and RFC5 genes suggest a basis for RFC subunit-subunit interactions. Mol Gen Genet 264(4):378-91 PMID: 11129041
- Gomes XV, et al. (2000) Overproduction in Escherichia coli and characterization of yeast replication factor C lacking the ligase homology domain. J Biol Chem 275(19):14541-9 PMID: 10799539
- Gray FC and MacNeill SA (2000) The Schizosaccharomyces pombe rfc3+ gene encodes a homologue of the human hRFC36 and Saccharomyces cerevisiae Rfc3 subunits of replication factor C. Curr Genet 37(3):159-67 PMID: 10794172
- Green CM, et al. (2000) A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr Biol 10(1):39-42 PMID: 10660302
- Naiki T, et al. (2000) Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae. Mol Cell Biol 20(16):5888-96 PMID: 10913172
- Pisani FM, et al. (2000) Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. J Mol Biol 301(1):61-73 PMID: 10926493
- Amin NS, et al. (1999) Dominant mutations in three different subunits of replication factor C suppress replication defects in yeast PCNA mutants. Genetics 153(4):1617-28 PMID: 10581271
- Bluyssen HA, et al. (1999) Human and mouse homologs of the Schizosaccharomyces pombe rad17+ cell cycle checkpoint control gene. Genomics 55(2):219-28 PMID: 9933569
- Burgers PM (1999) Overexpression of multisubunit replication factors in yeast. Methods 18(3):349-55 PMID: 10454996
- Kolodner RD and Marsischky GT (1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9(1):89-96 PMID: 10072354
- Shimada M, et al. (1999) Replication factor C3 of Schizosaccharomyces pombe, a small subunit of replication factor C complex, plays a role in both replication and damage checkpoints. Mol Biol Cell 10(12):3991-4003 PMID: 10588638
- Stoltenburg R, et al. (1999) Molecular cloning and expression of the ARFC3 gene, a component of the replication factor C from the salt-tolerant, dimorphic yeast Arxula adeninivorans LS3. Curr Genet 35(1):8-13 PMID: 10022943
- Beckwith WH, et al. (1998) Destabilized PCNA trimers suppress defective Rfc1 proteins in vivo and in vitro. Biochemistry 37(11):3711-22 PMID: 9521689
- Burgers PM and Gerik KJ (1998) Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 273(31):19756-62 PMID: 9677406
- Hashimoto K, et al. (1998) The second subunit of DNA polymerase III (delta) is encoded by the HYS2 gene in Saccharomyces cerevisiae. Nucleic Acids Res 26(2):477-85 PMID: 9421503
- Merrill BJ and Holm C (1998) The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis. Genetics 148(2):611-24 PMID: 9504910
- Mossi R and Hübscher U (1998) Clamping down on clamps and clamp loaders--the eukaryotic replication factor C. Eur J Biochem 254(2):209-16 PMID: 9660172
- Noskov VN, et al. (1998) The RFC2 gene, encoding the third-largest subunit of the replication factor C complex, is required for an S-phase checkpoint in Saccharomyces cerevisiae. Mol Cell Biol 18(8):4914-23 PMID: 9671499
- Shimomura T, et al. (1998) Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways. Mol Cell Biol 18(9):5485-91 PMID: 9710632
- Bork P, et al. (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J 11(1):68-76 PMID: 9034168
- Eissenberg JC, et al. (1997) Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol Cell Biol 17(11):6367-78 PMID: 9343398
- Gerik KJ, et al. (1997) Overproduction and affinity purification of Saccharomyces cerevisiae replication factor C. J Biol Chem 272(2):1256-62 PMID: 8995429
- Hindges R and Hübscher U (1997) DNA polymerase delta, an essential enzyme for DNA transactions. Biol Chem 378(5):345-62 PMID: 9191022
- Kafer E and May G (1997) The uvsF gene region in Aspergillus nidulans codes for a protein with homology to DNA replication factor C. Gene 191(2):155-9 PMID: 9218714
- Lydall D and Weinert T (1997) G2/M checkpoint genes of Saccharomyces cerevisiae: further evidence for roles in DNA replication and/or repair. Mol Gen Genet 256(6):638-51 PMID: 9435789
- Sugimoto K, et al. (1997) Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Mol Cell Biol 17(10):5905-14 PMID: 9315648
- Zuo S, et al. (1997) DNA polymerase delta isolated from Schizosaccharomyces pombe contains five subunits. Proc Natl Acad Sci U S A 94(21):11244-9 PMID: 9326594
- Adams AK and Holm C (1996) Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae. Mol Cell Biol 16(9):4614-20 PMID: 8756617
- McAlear MA, et al. (1996) The large subunit of replication factor C (Rfc1p/Cdc44p) is required for DNA replication and DNA repair in Saccharomyces cerevisiae. Genetics 142(1):65-78 PMID: 8770585
- Sugimoto K, et al. (1996) Rfc5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast. Proc Natl Acad Sci U S A 93(14):7048-52 PMID: 8692942
- Ayyagari R, et al. (1995) A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol Cell Biol 15(8):4420-9 PMID: 7623835
- Cullmann G, et al. (1995) Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol Cell Biol 15(9):4661-71 PMID: 7651383
- Gary SL and Burgers MJ (1995) Identification of the fifth subunit of Saccharomyces cerevisiae replication factor C. Nucleic Acids Res 23(24):4986-91 PMID: 8559655
- Griffiths DJ, et al. (1995) Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J 14(23):5812-23 PMID: 8846774
- Maurer KC, et al. (1995) Sequence analysis of a 30 kb DNA segment from yeast chromosome XIV carrying a ribosomal protein gene cluster, the genes encoding a plasma membrane protein and a subunit of replication factor C, and a novel putative serine/threonine protein kinase gene. Yeast 11(13):1303-10 PMID: 8553702
- Howell EA, et al. (1994) CDC44: a putative nucleotide-binding protein required for cell cycle progression that has homology to subunits of replication factor C. Mol Cell Biol 14(1):255-67 PMID: 8264593
- Kouprina N, et al. (1994) CHL12, a gene essential for the fidelity of chromosome transmission in the yeast Saccharomyces cerevisiae. Genetics 138(4):1067-79 PMID: 7896091
- Li X and Burgers PM (1994) Molecular cloning and expression of the Saccharomyces cerevisiae RFC3 gene, an essential component of replication factor C. Proc Natl Acad Sci U S A 91(3):868-72 PMID: 8302859
- Li X and Burgers PM (1994) Cloning and characterization of the essential Saccharomyces cerevisiae RFC4 gene encoding the 37-kDa subunit of replication factor C. J Biol Chem 269(34):21880-4 PMID: 8063832
- McAlear MA, et al. (1994) Proliferating cell nuclear antigen (pol30) mutations suppress cdc44 mutations and identify potential regions of interaction between the two encoded proteins. Mol Cell Biol 14(7):4390-7 PMID: 7516465
- Fien K and Stillman B (1992) Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. Mol Cell Biol 12(1):155-63 PMID: 1346062
- Li X, et al. (1992) A Saccharomyces cerevisiae DNA helicase associated with replication factor C. J Biol Chem 267(35):25321-7 PMID: 1460028
- Burgers PM (1991) Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J Biol Chem 266(33):22698-706 PMID: 1682322
- Yoder BL and Burgers PM (1991) Saccharomyces cerevisiae replication factor C. I. Purification and characterization of its ATPase activity. J Biol Chem 266(33):22689-97 PMID: 1682321