Literature Help
MXR1 / YER042W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 99
- Aliases
-
msrA
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Schepers J, et al. (2023) Methionine Sulfoxide Reductases Suppress the Formation of the [PSI+] Prion and Protein Aggregation in Yeast. Antioxidants (Basel) 12(2) PMID:36829961
- Zhang Y, et al. (2022) Rapid evolution and mechanism elucidation for efficient cellobiose-utilizing Saccharomyces cerevisiae through Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution. Bioresour Technol 356:127268 PMID:35533888
- Jia B, et al. (2018) Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat Commun 9(1):1933 PMID:29789567
- Vallières C, et al. (2017) Mitochondrial Ferredoxin Determines Vulnerability of Cells to Copper Excess. Cell Chem Biol 24(10):1228-1237.e3 PMID:28867595
- Allu PK, et al. (2015) Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress. Mol Biol Cell 26(3):406-19 PMID:25428986
- Doronina VA, et al. (2015) Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion. Mol Microbiol 96(1):163-74 PMID:25601439
- Kwak GH, et al. (2012) Analyses of methionine sulfoxide reductase activities towards free and peptidyl methionine sulfoxides. Arch Biochem Biophys 527(1):1-5 PMID:22867795
- Collinson EJ, et al. (2011) The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J Biol Chem 286(3):2205-14 PMID:21081499
- Ma XX, et al. (2011) Structural plasticity of the thioredoxin recognition site of yeast methionine S-sulfoxide reductase Mxr1. J Biol Chem 286(15):13430-7 PMID:21345799
- Kaya A, et al. (2010) Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry 49(39):8618-25 PMID:20799725
- Kwak GH, et al. (2010) Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A. BMB Rep 43(9):622-8 PMID:20846495
- Kwak GH, et al. (2009) Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae. BMB Rep 42(2):113-8 PMID:19250613
- Le DT, et al. (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284(7):4354-64 PMID:19049972
- Sideri TC, et al. (2009) Methionine sulphoxide reductases protect iron-sulphur clusters from oxidative inactivation in yeast. Microbiology (Reading) 155(Pt 2):612-623 PMID:19202110
- Oien D and Moskovitz J (2007) Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain. Amino Acids 32(4):603-6 PMID:17077964
- Kim HY and Gladyshev VN (2005) Role of structural and functional elements of mouse methionine-S-sulfoxide reductase in its subcellular distribution. Biochemistry 44(22):8059-67 PMID:15924425
- Koc A, et al. (2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc Natl Acad Sci U S A 101(21):7999-8004 PMID:15141092
- Hanbauer I, et al. (2003) A homologue of elongation factor 1 gamma regulates methionine sulfoxide reductase A gene expression in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100(14):8199-204 PMID:12824466
- Hansen J, et al. (2002) The level of MXR1 gene expression in brewing yeast during beer fermentation is a major determinant for the concentration of dimethyl sulfide in beer. FEMS Yeast Res 2(2):137-49 PMID:12702301
- Kryukov GV, et al. (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99(7):4245-50 PMID:11929995
- Kumar RA, et al. (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J Biol Chem 277(40):37527-35 PMID:12145281
- Moskovitz J, et al. (2000) Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J Biol Chem 275(19):14167-72 PMID:10799493
- Hansen J (1999) Inactivation of MXR1 abolishes formation of dimethyl sulfide from dimethyl sulfoxide in Saccharomyces cerevisiae. Appl Environ Microbiol 65(9):3915-9 PMID:10473395
- Moskovitz J, et al. (1998) Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci U S A 95(24):14071-5 PMID:9826655
- Moskovitz J, et al. (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci U S A 94(18):9585-9 PMID:9275166
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Conacher CG, et al. (2022) A Transcriptomic Analysis of Higher-Order Ecological Interactions in a Eukaryotic Model Microbial Ecosystem. mSphere 7(6):e0043622 PMID:36259715
- Imre A, et al. (2022) Heme Oxygenase-1 (HMX1) Loss of Function Increases the In-Host Fitness of the Saccharomyces 'boulardii' Probiotic Yeast in a Mouse Fungemia Model. J Fungi (Basel) 8(5) PMID:35628777
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhao W, et al. (2021) Yeast YPK9 deficiency results in shortened replicative lifespan and sensitivity to hydrogen peroxide. Biogerontology 22(5):547-563 PMID:34524607
- Šoštarić N, et al. (2021) Integrated Multi-Omics Analysis of Mechanisms Underlying Yeast Ethanol Tolerance. J Proteome Res 20(8):3840-3852 PMID:34236875
- Nicklow EE and Sevier CS (2020) Activity of the yeast cytoplasmic Hsp70 nucleotide-exchange factor Fes1 is regulated by reversible methionine oxidation. J Biol Chem 295(2):552-569 PMID:31806703
- Blount BA, et al. (2018) Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9(1):1932 PMID:29789540
- Le DT, et al. (2018) Function of the evolutionarily conserved plant methionine-S-sulfoxide reductase without the catalytic residue. Protoplasma 255(6):1741-1750 PMID:29808313
- Allan KM, et al. (2016) Trapping redox partnerships in oxidant-sensitive proteins with a small, thiol-reactive cross-linker. Free Radic Biol Med 101:356-366 PMID:27816612
- Bravim F, et al. (2016) High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress. FEMS Yeast Res 16(5) PMID:27388472
- Tarrago L, et al. (2015) Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nat Chem Biol 11(5):332-8 PMID:25799144
- Promponas VJ, et al. (2014) Experimental evidence validating the computational inference of functional associations from gene fusion events: a critical survey. Brief Bioinform 15(3):443-54 PMID:23220349
- Le DT, et al. (2013) Diversity of plant methionine sulfoxide reductases B and evolution of a form specific for free methionine sulfoxide. PLoS One 8(6):e65637 PMID:23776515
- Fomenko DE and Gladyshev VN (2012) Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes. Antioxid Redox Signal 16(3):193-201 PMID:21902454
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Jossé L, et al. (2011) Transcriptomic and phenotypic analysis of the effects of T-2 toxin on Saccharomyces cerevisiae: evidence of mitochondrial involvement. FEMS Yeast Res 11(1):133-50 PMID:21114626
- Montanini B, et al. (2011) Genome-wide search and functional identification of transcription factors in the mycorrhizal fungus Tuber melanosporum. New Phytol 189(3):736-750 PMID:21058951
- Petti AA, et al. (2011) Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function. Proc Natl Acad Sci U S A 108(45):E1089-98 PMID:21734149
- Santos A and Marquina D (2011) The transcriptional response of Saccharomyces cerevisiae to proapoptotic concentrations of Pichia membranifaciens killer toxin. Fungal Genet Biol 48(10):979-89 PMID:21801845
- Sideri TC, et al. (2011) Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J Biol Chem 286(45):38924-31 PMID:21832086
- Hacioglu E, et al. (2010) The roles of thiol oxidoreductases in yeast replicative aging. Mech Ageing Dev 131(11-12):692-9 PMID:20934449
- Rodriguez-Colman MJ, et al. (2010) The forkhead transcription factor Hcm1 promotes mitochondrial biogenesis and stress resistance in yeast. J Biol Chem 285(47):37092-101 PMID:20847055
- Heer D, et al. (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol 75(24):7631-8 PMID:19854918
- Marino SM and Gladyshev VN (2009) A structure-based approach for detection of thiol oxidoreductases and their catalytic redox-active cysteine residues. PLoS Comput Biol 5(5):e1000383 PMID:19424433
- Szklarczyk R and Huynen MA (2009) Expansion of the human mitochondrial proteome by intra- and inter-compartmental protein duplication. Genome Biol 10(11):R135 PMID:19930686
- Gibson BR, et al. (2008) The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res 8(4):574-85 PMID:18373683
- Lee PY, et al. (2008) Interactome analysis of yeast glutathione peroxidase 3. J Microbiol Biotechnol 18(8):1364-7 PMID:18756095
- Trott A, et al. (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 19(3):1104-12 PMID:18199679
- Hanbauer I and Moskovitz J (2006) The yeast cytosolic thioredoxins are involved in the regulation of methionine sulfoxide reductase A. Free Radic Biol Med 40(8):1391-6 PMID:16631529
- Kho CW, et al. (2006) Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem Biophys Res Commun 348(1):25-35 PMID:16808898
- Le Moan N, et al. (2006) The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 281(15):10420-30 PMID:16418165
- Sumner ER, et al. (2005) Oxidative protein damage causes chromium toxicity in yeast. Microbiology (Reading) 151(Pt 6):1939-1948 PMID:15942001
- Parveen M, et al. (2004) Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. J Antimicrob Chemother 54(1):46-55 PMID:15201226
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Rubin-Bejerano I, et al. (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 100(19):11007-12 PMID:12958213
Reviews
No reviews curated.
Download References (.nbib)
- Dzialo MC, et al. (2017) Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 41(Supp_1):S95-S128 PMID:28830094
- Herrero E, et al. (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780(11):1217-35 PMID:18178164
- Costa V, et al. (2007) Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB Life 59(4-5):293-8 PMID:17505968
- Koc A and Gladyshev VN (2007) Methionine sulfoxide reduction and the aging process. Ann N Y Acad Sci 1100:383-6 PMID:17460202
- Toledano MB, et al. (2007) The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 581(19):3598-607 PMID:17659286
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Kaya A, et al. (2010) Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry 49(39):8618-25 PMID:20799725
- Koc A, et al. (2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc Natl Acad Sci U S A 101(21):7999-8004 PMID:15141092
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID:14562095
- Kryukov GV, et al. (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99(7):4245-50 PMID:11929995
- Moskovitz J, et al. (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci U S A 94(18):9585-9 PMID:9275166
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Collinson EJ, et al. (2011) The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J Biol Chem 286(3):2205-14 PMID:21081499
- Kaya A, et al. (2010) Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast. Biochemistry 49(39):8618-25 PMID:20799725
- Le DT, et al. (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284(7):4354-64 PMID:19049972
- Oien D and Moskovitz J (2007) Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain. Amino Acids 32(4):603-6 PMID:17077964
- Koc A, et al. (2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc Natl Acad Sci U S A 101(21):7999-8004 PMID:15141092
- Kryukov GV, et al. (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99(7):4245-50 PMID:11929995
- Moskovitz J, et al. (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci U S A 94(18):9585-9 PMID:9275166
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Filali-Mouncef Y, et al. (2024) An APEX2-based proximity-dependent biotinylation assay with temporal specificity to study protein interactions during autophagy in the yeast Saccharomyces cerevisiae. Autophagy 20(10):2323-2337 PMID:38958087
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Waltho A, et al. (2024) K48- and K63-linked ubiquitin chain interactome reveals branch- and length-specific ubiquitin interactors. Life Sci Alliance 7(8) PMID:38803224
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Kolhe JA, et al. (2023) The Hsp90 molecular chaperone governs client proteins by targeting intrinsically disordered regions. Mol Cell 83(12):2035-2044.e7 PMID:37295430
- Feder ZA, et al. (2021) Subcellular localization of the J-protein Sis1 regulates the heat shock response. J Cell Biol 220(1) PMID:33326013
- Schoppe J, et al. (2020) AP-3 vesicle uncoating occurs after HOPS-dependent vacuole tethering. EMBO J 39(20):e105117 PMID:32840906
- Bhalla P, et al. (2019) Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 702:205-214 PMID:30593915
- Girstmair H, et al. (2019) The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range. Nat Commun 10(1):3626 PMID:31399574
- Guo X, et al. (2017) Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J Biol Chem 292(28):11751-11759 PMID:28539364
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Schenk L, et al. (2012) La-motif-dependent mRNA association with Slf1 promotes copper detoxification in yeast. RNA 18(3):449-61 PMID:22271760
- Collinson EJ, et al. (2011) The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J Biol Chem 286(3):2205-14 PMID:21081499
- Ma XX, et al. (2011) Structural plasticity of the thioredoxin recognition site of yeast methionine S-sulfoxide reductase Mxr1. J Biol Chem 286(15):13430-7 PMID:21345799
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Kaake RM, et al. (2010) Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J Proteome Res 9(4):2016-29 PMID:20170199
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Le DT, et al. (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284(7):4354-64 PMID:19049972
- Lee PY, et al. (2008) Interactome analysis of yeast glutathione peroxidase 3. J Microbiol Biotechnol 18(8):1364-7 PMID:18756095
- Tarassov K, et al. (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465-70 PMID:18467557
- Kho CW, et al. (2006) Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem Biophys Res Commun 348(1):25-35 PMID:16808898
- Vignols F, et al. (2005) A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo. Proc Natl Acad Sci U S A 102(46):16729-34 PMID:16272220
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Download References (.nbib)
- Nicklow EE and Sevier CS (2020) Activity of the yeast cytoplasmic Hsp70 nucleotide-exchange factor Fes1 is regulated by reversible methionine oxidation. J Biol Chem 295(2):552-569 PMID:31806703
- Rodriguez-Colman MJ, et al. (2010) The forkhead transcription factor Hcm1 promotes mitochondrial biogenesis and stress resistance in yeast. J Biol Chem 285(47):37092-101 PMID:20847055
- Hanbauer I, et al. (2003) A homologue of elongation factor 1 gamma regulates methionine sulfoxide reductase A gene expression in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100(14):8199-204 PMID:12824466
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- Chen YC, et al. (2018) Glucose intake hampers PKA-regulated HSP90 chaperone activity. Elife 7 PMID:30516470
- Henriksen P, et al. (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510-22 PMID:22865919
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Liu HL, et al. (2021) Tryptophan plays an important role in yeast's tolerance to isobutanol. Biotechnol Biofuels 14(1):200 PMID:34645498
- Chen X, et al. (2020) FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Nat Commun 11(1):867 PMID:32054832
- Mondeel TDGA, et al. (2019) ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast. Nucleic Acids Res 47(15):7825-7841 PMID:31299083
- Nair S, et al. (2014) Genome-wide analysis of Saccharomyces cerevisiae identifies cellular processes affecting intracellular aggregation of Alzheimer's amyloid-β42: importance of lipid homeostasis. Mol Biol Cell 25(15):2235-49 PMID:24870034
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Teng X, et al. (2011) Gene-dependent cell death in yeast. Cell Death Dis 2(8):e188 PMID:21814286
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549