Literature Help
YGL218W Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Stenger M, et al. (2020) Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae. Microb Cell 7(9):234-249 PMID:32904421
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Böckler S and Westermann B (2014) Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev Cell 28(4):450-8 PMID:24530295
- Ottosson LG, et al. (2010) Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. Eukaryot Cell 9(10):1635-47 PMID:20675578
- Ando A, et al. (2007) Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res 7(2):244-53 PMID:16989656
- Fisk DG, et al. (2006) Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast 23(12):857-65 PMID:17001629
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Abe F and Minegishi H (2008) Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics 178(2):851-72 PMID:18245339
- Xia L, et al. (2007) Identification of genes required for protection from doxorubicin by a genome-wide screen in Saccharomyces cerevisiae. Cancer Res 67(23):11411-8 PMID:18056469
- Dimmer KS, et al. (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13(3):847-53 PMID:11907266
- Zhang CT and Wang J (2000) Recognition of protein coding genes in the yeast genome at better than 95% accuracy based on the Z curve. Nucleic Acids Res 28(14):2804-14 PMID:10908339
Reviews
No reviews curated.
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Chen X, et al. (2022) Suppressors of amyloid-β toxicity improve recombinant protein production in yeast by reducing oxidative stress and tuning cellular metabolism. Metab Eng 72:311-324 PMID:35508267
- Ottosson LG, et al. (2010) Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. Eukaryot Cell 9(10):1635-47 PMID:20675578
- Ando A, et al. (2007) Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res 7(2):244-53 PMID:16989656
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Mota MN, et al. (2024) Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microb Cell Fact 23(1):71 PMID:38419072
- Ogbede JU, et al. (2021) A genome-wide portrait of pervasive drug contaminants. Sci Rep 11(1):12487 PMID:34127714
- Ayers MC, et al. (2020) Oxidative Stress Responses and Nutrient Starvation in MCHM Treated Saccharomyces cerevisiae. G3 (Bethesda) 10(12):4665-4678 PMID:33109726
- Chen X, et al. (2020) FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Nat Commun 11(1):867 PMID:32054832
- Zhao YY, et al. (2020) Genetic analysis of oxidative and endoplasmic reticulum stress responses induced by cobalt toxicity in budding yeast. Biochim Biophys Acta Gen Subj 1864(3):129516 PMID:31904504
- Fletcher E, et al. (2019) Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metab Eng 52:98-109 PMID:30471359
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- García R, et al. (2015) Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 16(1):683 PMID:26341223
- Böckler S and Westermann B (2014) Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev Cell 28(4):450-8 PMID:24530295
- Jarolim S, et al. (2013) Saccharomyces cerevisiae genes involved in survival of heat shock. G3 (Bethesda) 3(12):2321-33 PMID:24142923
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Tun NM, et al. (2013) Disulfide stress-induced aluminium toxicity: molecular insights through genome-wide screening of Saccharomyces cerevisiae. Metallomics 5(8):1068-75 PMID:23832094
- Zhang L, et al. (2013) The transcriptional control machinery as well as the cell wall integrity and its regulation are involved in the detoxification of the organic solvent dimethyl sulfoxide in Saccharomyces cerevisiae. FEMS Yeast Res 13(2):200-18 PMID:23157175
- Hoose SA, et al. (2012) A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division. PLoS Genet 8(3):e1002590 PMID:22438835
- Lockshon D, et al. (2012) Rho signaling participates in membrane fluidity homeostasis. PLoS One 7(10):e45049 PMID:23071506
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Barreto L, et al. (2011) A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. Eukaryot Cell 10(9):1241-50 PMID:21724935
- Bleackley MR, et al. (2011) High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae. Metallomics 3(2):195-205 PMID:21212869
- Dos Santos SC and Sá-Correia I (2011) A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine. Mol Genet Genomics 286(5-6):333-46 PMID:21960436
- Teng X, et al. (2011) Gene-dependent cell death in yeast. Cell Death Dis 2(8):e188 PMID:21814286
- Ruiz-Roig C, et al. (2010) The Rpd3L HDAC complex is essential for the heat stress response in yeast. Mol Microbiol 76(4):1049-62 PMID:20398213
- McLaughlin JE, et al. (2009) A genome-wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A 106(51):21883-8 PMID:20007368
- Teixeira MC, et al. (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75(18):5761-72 PMID:19633105
- Abe F and Minegishi H (2008) Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics 178(2):851-72 PMID:18245339
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Ando A, et al. (2007) Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res 7(2):244-53 PMID:16989656
- Xia L, et al. (2007) Identification of genes required for protection from doxorubicin by a genome-wide screen in Saccharomyces cerevisiae. Cancer Res 67(23):11411-8 PMID:18056469
- Yadav J, et al. (2007) A phenomics approach in yeast links proton and calcium pump function in the Golgi. Mol Biol Cell 18(4):1480-9 PMID:17314395
- Ando A, et al. (2006) Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Res 6(2):249-67 PMID:16487347
- Mendiratta G, et al. (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281(11):7040-8 PMID:16415340
- Deutschbauer AM, et al. (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169(4):1915-25 PMID:15716499
- Hartman JL and Tippery NP (2004) Systematic quantification of gene interactions by phenotypic array analysis. Genome Biol 5(7):R49 PMID:15239834
- Mollapour M, et al. (2004) Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast 21(11):927-46 PMID:15334557
- Enyenihi AH and Saunders WS (2003) Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163(1):47-54 PMID:12586695
- Dimmer KS, et al. (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13(3):847-53 PMID:11907266
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Jorgensen P, et al. (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297(5580):395-400 PMID:12089449
- Steinmetz LM, et al. (2002) Systematic screen for human disease genes in yeast. Nat Genet 31(4):400-4 PMID:12134146
- Wilson WA, et al. (2002) Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics 1(3):232-42 PMID:12096123