Literature Help
PEX8 / YGR077C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
- Unique References
- 131
- Aliases
-
PAS6
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Wróblewska JP, et al. (2017) Saccharomyces cerevisiae cells lacking Pex3 contain membrane vesicles that harbor a subset of peroxisomal membrane proteins. Biochim Biophys Acta Mol Cell Res 1864(10):1656-1667 PMID:28552664
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Oeljeklaus S, et al. (2012) Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. J Proteome Res 11(4):2567-80 PMID:22375831
- Deckers M, et al. (2010) Targeting of Pex8p to the peroxisomal importomer. Eur J Cell Biol 89(12):924-31 PMID:20655618
- Meinecke M, et al. (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12(3):273-7 PMID:20154681
- Saleem RA, et al. (2010) Genome-wide analysis of effectors of peroxisome biogenesis. PLoS One 5(8):e11953 PMID:20694151
- Kiel JA, et al. (2005) Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem 280(3):1921-30 PMID:15536088
- Wang X, et al. (2004) Multiple targeting modules on peroxisomal proteins are not redundant: discrete functions of targeting signals within Pmp47 and Pex8p. Mol Biol Cell 15(4):1702-10 PMID:14742703
- Agne B, et al. (2003) Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 11(3):635-46 PMID:12667447
- Rehling P, et al. (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J Biol Chem 275(5):3593-602 PMID:10652355
- Lazarow PB and Kunau WH (1997) "Peroxisomes." Pp. 547-605 in The Molecular and Cellular Biology of the Yeast Saccharomyces: Cell Cycle and Cell Biology, edited by Pringle JR, Broach JR and Jones EW. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
- Van der Leij I, et al. (1992) Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol 119(1):153-62 PMID:1356111
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Fischer S, et al. (2023) Phosphorylation of the receptor protein Pex5p modulates import of proteins into peroxisomes. Biol Chem 404(2-3):135-155 PMID:36122347
- El Magraoui F, et al. (2019) The deubiquitination of the PTS1-import receptor Pex5p is required for peroxisomal matrix protein import. Biochim Biophys Acta Mol Cell Res 1866(2):199-213 PMID:30408545
- Hensel A, et al. (2011) Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane. J Biol Chem 286(50):43495-505 PMID:22021076
- Jung PP, et al. (2011) Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 12:331 PMID:21711526
- van der Zand A, et al. (2010) Peroxisomal membrane proteins insert into the endoplasmic reticulum. Mol Biol Cell 21(12):2057-65 PMID:20427571
- Rintala E, et al. (2009) Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics 10:461 PMID:19804647
- Teixeira MC, et al. (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75(18):5761-72 PMID:19633105
- Yoshikawa K, et al. (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9(1):32-44 PMID:19054128
- Zipor G, et al. (2009) Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 106(47):19848-53 PMID:19903887
- Kennedy J and Yi EC (2008) Use of gas-phase fractionation to increase protein identifications : application to the peroxisome. Methods Mol Biol 432:217-28 PMID:18370021
- Lockshon D, et al. (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175(1):77-91 PMID:17151231
- van der Klei I and Veenhuis M (2007) Protein targeting to yeast peroxisomes. Methods Mol Biol 390:373-91 PMID:17951701
- De Hertogh B, et al. (2006) Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172(2):771-81 PMID:16118182
- Gabaldón T, et al. (2006) Origin and evolution of the peroxisomal proteome. Biol Direct 1:8 PMID:16556314
- Rosenkranz K, et al. (2006) Functional association of the AAA complex and the peroxisomal importomer. FEBS J 273(16):3804-15 PMID:16911527
- Platta HW, et al. (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7(8):817-22 PMID:16007078
- Willingham S, et al. (2003) Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 302(5651):1769-72 PMID:14657499
- Schäfer H, et al. (2001) Identification of peroxisomal membrane proteins of Saccharomyces cerevisiae by mass spectrometry. Electrophoresis 22(14):2955-68 PMID:11565790
- Hettema EH, et al. (2000) Saccharomyces cerevisiae pex3p and pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J 19(2):223-33 PMID:10637226
- Geisbrecht BV, et al. (1999) Preliminary characterization of Yor180Cp: identification of a novel peroxisomal protein of saccharomyces cerevisiae involved in fatty acid metabolism. Biochem Biophys Res Commun 260(1):28-34 PMID:10381339
- Geisbrecht BV, et al. (1998) Molecular characterization of Saccharomyces cerevisiae Delta3, Delta2-enoyl-CoA isomerase. J Biol Chem 273(50):33184-91 PMID:9837886
- Distel B, et al. (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135(1):1-3 PMID:8858157
- Erdmann R and Kunau WH (1994) Purification and immunolocalization of the peroxisomal 3-oxoacyl-CoA thiolase from Saccharomyces cerevisiae. Yeast 10(9):1173-82 PMID:7754706
Reviews
No reviews curated.
Download References (.nbib)
- Okumoto K, et al. (2020) Peroxisome: Metabolic Functions and Biogenesis. Adv Exp Med Biol 1299:3-17 PMID:33417203
- Walter T and Erdmann R (2019) Current Advances in Protein Import into Peroxisomes. Protein J 38(3):351-362 PMID:31054036
- Grimm I, et al. (2016) Role of AAA(+)-proteins in peroxisome biogenesis and function. Biochim Biophys Acta 1863(5):828-37 PMID:26453804
- Mayerhofer PU (2016) Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes. Biochim Biophys Acta 1863(5):870-80 PMID:26392202
- Meinecke M, et al. (2016) Peroxisomal protein import pores. Biochim Biophys Acta 1863(5):821-7 PMID:26497277
- Platta HW, et al. (2016) Regulation of peroxisomal matrix protein import by ubiquitination. Biochim Biophys Acta 1863(5):838-49 PMID:26367801
- Sibirny AA (2016) Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res 16(4) PMID:27189367
- Yuan W, et al. (2016) The birth of yeast peroxisomes. Biochim Biophys Acta 1863(5):902-10 PMID:26367802
- Kim PK and Hettema EH (2015) Multiple pathways for protein transport to peroxisomes. J Mol Biol 427(6 Pt A):1176-90 PMID:25681696
- Veenhuis M and van der Klei IJ (2014) A critical reflection on the principles of peroxisome formation in yeast. Front Physiol 5:110 PMID:24688473
- Kohlwein SD, et al. (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 193(1):1-50 PMID:23275493
- Platta HW, et al. (2013) The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 70(8):1393-411 PMID:22983384
- Sibirnyĭ AA (2012) [Molecular mechanisms of peroxisome biogenesis in yeasts]. Mol Biol (Mosk) 46(1):14-30 PMID:22642098
- Gabaldón T (2010) Peroxisome diversity and evolution. Philos Trans R Soc Lond B Biol Sci 365(1541):765-73 PMID:20124343
- Girzalsky W, et al. (2010) Peroxisomal protein translocation. Biochim Biophys Acta 1803(6):724-31 PMID:20079383
- Mast FD, et al. (2010) The peroxisomal protein importomer: a bunch of transients with expanding waistlines. Nat Cell Biol 12(3):203-5 PMID:20190827
- Smith JJ and Aitchison JD (2009) Regulation of peroxisome dynamics. Curr Opin Cell Biol 21(1):119-26 PMID:19188056
- Brown LA and Baker A (2008) Shuttles and cycles: transport of proteins into the peroxisome matrix (review). Mol Membr Biol 25(5):363-75 PMID:18651315
- Kiel JA, et al. (2006) PEX genes in fungal genomes: common, rare or redundant. Traffic 7(10):1291-303 PMID:16978390
- Léon S, et al. (2006) Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. Biochim Biophys Acta 1763(12):1552-64 PMID:17011644
- Rayapuram N and Subramani S (2006) The importomer--a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix. Biochim Biophys Acta 1763(12):1613-9 PMID:17027097
- Saleem RA, et al. (2006) Proteomics of the peroxisome. Biochim Biophys Acta 1763(12):1541-51 PMID:17050007
- Gunkel K, et al. (2005) Protein translocation machineries: how organelles bring in matrix proteins. FEMS Yeast Res 5(11):1037-45 PMID:16269392
- Heiland I and Erdmann R (2005) Biogenesis of peroxisomes. Topogenesis of the peroxisomal membrane and matrix proteins. FEBS J 272(10):2362-72 PMID:15885087
- Brown LA and Baker A (2003) Peroxisome biogenesis and the role of protein import. J Cell Mol Med 7(4):388-400 PMID:14754507
- Gould SJ and Collins CS (2002) Opinion: peroxisomal-protein import: is it really that complex? Nat Rev Mol Cell Biol 3(5):382-9 PMID:11988772
- Sacksteder KA and Gould SJ (2000) The genetics of peroxisome biogenesis. Annu Rev Genet 34:623-652 PMID:11092841
- Subramani S, et al. (2000) Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 69:399-418 PMID:10966464
- Hettema EH, et al. (1999) Import of proteins into peroxisomes. Biochim Biophys Acta 1451(1):17-34 PMID:10446385
- Waterham HR and Cregg JM (1997) Peroxisome biogenesis. Bioessays 19(1):57-66 PMID:9008417
- Kunau WH, et al. (1993) Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: forward and reversed genetics. Biochimie 75(3-4):209-24 PMID:8507683
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Oeljeklaus S, et al. (2012) Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. J Proteome Res 11(4):2567-80 PMID:22375831
- Agne B, et al. (2003) Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 11(3):635-46 PMID:12667447
- Rehling P, et al. (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J Biol Chem 275(5):3593-602 PMID:10652355
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Download References (.nbib)
- Fischer S, et al. (2023) Phosphorylation of the receptor protein Pex5p modulates import of proteins into peroxisomes. Biol Chem 404(2-3):135-155 PMID:36122347
- Kiel JA, et al. (2005) Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem 280(3):1921-30 PMID:15536088
- Rehling P, et al. (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J Biol Chem 275(5):3593-602 PMID:10652355
- Van der Leij I, et al. (1992) Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol 119(1):153-62 PMID:1356111
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Choudhry SK, et al. (2023) Nuclear pore complexes mediate subtelomeric gene silencing by regulating PCNA levels on chromatin. J Cell Biol 222(9) PMID:37358474
- Ekal L, et al. (2023) Spindle Position Checkpoint Kinase Kin4 Regulates Organelle Transport in Saccharomyces cerevisiae. Biomolecules 13(7) PMID:37509134
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Bayne RA, et al. (2022) Yeast Ssd1 is a non-enzymatic member of the RNase II family with an alternative RNA recognition site. Nucleic Acids Res 50(5):2923-2937 PMID:34302485
- Gutiérrez-Santiago F, et al. (2022) A High-Copy Suppressor Screen Reveals a Broad Role of Prefoldin-like Bud27 in the TOR Signaling Pathway in Saccharomyces cerevisiae. Genes (Basel) 13(5) PMID:35627133
- Lu PYT, et al. (2022) A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 222(3) PMID:36066422
- Garcia I, et al. (2021) Kel1 is a phosphorylation-regulated noise suppressor of the pheromone signaling pathway. Cell Rep 37(13):110186 PMID:34965431
- Gotor NL, et al. (2020) RNA-binding and prion domains: the Yin and Yang of phase separation. Nucleic Acids Res 48(17):9491-9504 PMID:32857852
- Sanders E, et al. (2020) Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1. G3 (Bethesda) 10(12):4359-4368 PMID:33115720
- Corcoles-Saez I, et al. (2018) Essential Function of Mec1, the Budding Yeast ATM/ATR Checkpoint-Response Kinase, in Protein Homeostasis. Dev Cell 46(4):495-503.e2 PMID:30130531
- Espinosa-Cantú A, et al. (2018) Protein Moonlighting Revealed by Noncatalytic Phenotypes of Yeast Enzymes. Genetics 208(1):419-431 PMID:29127264
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Makrantoni V, et al. (2017) A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (Bethesda) 7(9):3203-3215 PMID:28754723
- She R, et al. (2017) Comprehensive and quantitative mapping of RNA-protein interactions across a transcribed eukaryotic genome. Proc Natl Acad Sci U S A 114(14):3619-3624 PMID:28325876
- Zimmermann C, et al. (2017) Mapping the Synthetic Dosage Lethality Network of CDK1/CDC28. G3 (Bethesda) 7(6):1753-1766 PMID:28428242
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Chan A, et al. (2016) Pex17p-dependent assembly of Pex14p/Dyn2p-subcomplexes of the peroxisomal protein import machinery. Eur J Cell Biol 95(12):585-597 PMID:27823812
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Kyriakou D, et al. (2016) Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae. BMC Biol 14(1):106 PMID:27927215
- Ho KL, et al. (2015) A role for the budding yeast separase, Esp1, in Ty1 element retrotransposition. PLoS Genet 11(3):e1005109 PMID:25822502
- Aristizabal MJ, et al. (2013) High-throughput genetic and gene expression analysis of the RNAPII-CTD reveals unexpected connections to SRB10/CDK8. PLoS Genet 9(8):e1003758 PMID:24009531
- Surma MA, et al. (2013) A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol Cell 51(4):519-30 PMID:23891562
- Kaluarachchi Duffy S, et al. (2012) Exploring the yeast acetylome using functional genomics. Cell 149(4):936-48 PMID:22579291
- Oeljeklaus S, et al. (2012) Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. J Proteome Res 11(4):2567-80 PMID:22375831
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Chang HY, et al. (2011) Genome-wide analysis to identify pathways affecting telomere-initiated senescence in budding yeast. G3 (Bethesda) 1(3):197-208 PMID:22384331
- Pu J, et al. (2011) Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2(6):487-96 PMID:21748599
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Deckers M, et al. (2010) Targeting of Pex8p to the peroxisomal importomer. Eur J Cell Biol 89(12):924-31 PMID:20655618
- Colomina N, et al. (2008) Whi3, a developmental regulator of budding yeast, binds a large set of mRNAs functionally related to the endoplasmic reticulum. J Biol Chem 283(42):28670-9 PMID:18667435
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Lin YY, et al. (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22(15):2062-74 PMID:18676811
- Yu H, et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104-10 PMID:18719252
- Kerssen D, et al. (2006) Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 281(37):27003-15 PMID:16849337
- Pan X, et al. (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124(5):1069-81 PMID:16487579
- Rosenkranz K, et al. (2006) Functional association of the AAA complex and the peroxisomal importomer. FEBS J 273(16):3804-15 PMID:16911527
- Ye P, et al. (2005) Gene function prediction from congruent synthetic lethal interactions in yeast. Mol Syst Biol 1:2005.0026 PMID:16729061
- Pan X, et al. (2004) A robust toolkit for functional profiling of the yeast genome. Mol Cell 16(3):487-96 PMID:15525520
- Agne B, et al. (2003) Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 11(3):635-46 PMID:12667447
- Fromont-Racine M, et al. (2000) Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17(2):95-110 PMID:10900456
- Rehling P, et al. (2000) Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J Biol Chem 275(5):3593-602 PMID:10652355
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Coey CT and Clark DJ (2022) A systematic genome-wide account of binding sites for the model transcription factor Gcn4. Genome Res 32(2):367-377 PMID:34916251
- Guan M, et al. (2020) Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. Toxicol In Vitro 69:104998 PMID:32919014
- Stenger M, et al. (2020) Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae. Microb Cell 7(9):234-249 PMID:32904421
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Fröhlich F, et al. (2015) The GARP complex is required for cellular sphingolipid homeostasis. Elife 4 PMID:26357016
- Cohen Y, et al. (2014) Peroxisomes are juxtaposed to strategic sites on mitochondria. Mol Biosyst 10(7):1742-8 PMID:24722918
- Gaupel AC, et al. (2014) High throughput screening identifies modulators of histone deacetylase inhibitors. BMC Genomics 15(1):528 PMID:24968945
- Knechtle P, et al. (2014) The natural diyne-furan fatty acid EV-086 is an inhibitor of fungal delta-9 fatty acid desaturation with efficacy in a model of skin dermatophytosis. Antimicrob Agents Chemother 58(1):455-66 PMID:24189258
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- Huang Z, et al. (2013) A functional variomics tool for discovering drug-resistance genes and drug targets. Cell Rep 3(2):577-85 PMID:23416056
- Jarolim S, et al. (2013) Saccharomyces cerevisiae genes involved in survival of heat shock. G3 (Bethesda) 3(12):2321-33 PMID:24142923
- Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
- Vandenbosch D, et al. (2013) Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae. FEMS Yeast Res 13(8):720-30 PMID:24034557
- Lockshon D, et al. (2012) Rho signaling participates in membrane fluidity homeostasis. PLoS One 7(10):e45049 PMID:23071506
- North M, et al. (2012) Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 8(6):e1002699 PMID:22685415
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Yu D, et al. (2012) High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome. BMC Genomics 13:623 PMID:23151179
- de Castro PA, et al. (2011) Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae. Eukaryot Cell 10(3):398-411 PMID:21193549
- Ratnakumar S, et al. (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol Biosyst 7(1):139-49 PMID:20963216
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Pan X, et al. (2010) Trivalent arsenic inhibits the functions of chaperonin complex. Genetics 186(2):725-34 PMID:20660648
- Holbein S, et al. (2009) Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA 15(5):837-49 PMID:19324962
- Jo WJ, et al. (2009) Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae. BMC Genomics 10:130 PMID:19321002
- Teixeira MC, et al. (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75(18):5761-72 PMID:19633105
- Yoshikawa K, et al. (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9(1):32-44 PMID:19054128
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- Sinha H, et al. (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661-70 PMID:18780730
- Lockshon D, et al. (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175(1):77-91 PMID:17151231
- Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 21(3):319-30 PMID:16455487
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Willingham S, et al. (2003) Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 302(5651):1769-72 PMID:14657499
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549