Literature Help
IOC2 / YLR095C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Download References (.nbib)
- Eriksson PR and Clark DJ (2021) The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution. Sci Rep 11(1):4195 PMID:33602956
- Koch MR, et al. (2018) The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae. Genetics 208(3):963-976 PMID:29305386
- Krajewski WA (2014) Isw1a does not have strict limitations on the length of extranucleosomal DNAs for mobilization of nucleosomes assembled with HeLa cell histones. J Biomol Struct Dyn 32(4):523-31 PMID:23581908
- Krajewski WA (2013) Comparison of the Isw1a, Isw1b, and Isw2 nucleosome disrupting activities. Biochemistry 52(40):6940-9 PMID:24050724
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Theis JF, et al. (2010) The DNA damage response pathway contributes to the stability of chromosome III derivatives lacking efficient replicators. PLoS Genet 6(12):e1001227 PMID:21151954
- Pinskaya M, et al. (2009) Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae. Mol Cell Biol 29(9):2419-30 PMID:19273607
- Vanti M, et al. (2009) Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription. PLoS Genet 5(1):e1000339 PMID:19148280
- Gangaraju VK and Bartholomew B (2007) Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol Cell Biol 27(8):3217-25 PMID:17283061
- Mueller JE and Bryk M (2007) Isw1 acts independently of the Isw1a and Isw1b complexes in regulating transcriptional silencing at the ribosomal DNA locus in Saccharomyces cerevisiae. J Mol Biol 371(1):1-10 PMID:17561109
- Stockdale C, et al. (2006) Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J Biol Chem 281(24):16279-88 PMID:16606615
- Morillon A, et al. (2003) Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115(4):425-35 PMID:14622597
- Vary JC, et al. (2003) Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 23(1):80-91 PMID:12482963
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Matabishi-Bibi L, et al. (2022) Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention. Nat Commun 13(1):6331 PMID:36284099
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Andreatta ME, et al. (2015) The Recent De Novo Origin of Protein C-Termini. Genome Biol Evol 7(6):1686-701 PMID:26002864
- Hamperl S, et al. (2014) Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res 42(1):e2 PMID:24106087
- Deindl S, et al. (2013) ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152(3):442-52 PMID:23374341
- Vasicova P, et al. (2013) Nuclear import of chromatin remodeler Isw1 is mediated by atypical bipartite cNLS and classical import pathway. Traffic 14(2):176-93 PMID:23121014
- Hota SK, et al. (2012) Mapping protein-DNA and protein-protein interactions of ATP-dependent chromatin remodelers. Methods Mol Biol 809:381-409 PMID:22113290
- Lafon A, et al. (2012) Functional antagonism between Sas3 and Gcn5 acetyltransferases and ISWI chromatin remodelers. PLoS Genet 8(10):e1002994 PMID:23055944
- Maltby VE, et al. (2012) Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 32(17):3479-85 PMID:22751925
- Sikorski TW, et al. (2012) Proteomic analysis demonstrates activator- and chromatin-specific recruitment to promoters. J Biol Chem 287(42):35397-35408 PMID:22902623
- Smolle M, et al. (2012) Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19(9):884-92 PMID:22922743
- Jung PP, et al. (2011) Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 12:331 PMID:21711526
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Chen SH, et al. (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285(17):12803-12 PMID:20190278
- Krajewski WA and Reese JC (2010) SET domains of histone methyltransferases recognize ISWI-remodeled nucleosomal species. Mol Cell Biol 30(3):552-64 PMID:19752191
- On T, et al. (2010) The evolutionary landscape of the chromatin modification machinery reveals lineage specific gains, expansions, and losses. Proteins 78(9):2075-89 PMID:20455264
- Gangaraju VK, et al. (2009) Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol Cell 35(1):58-69 PMID:19595716
- Postma L, et al. (2009) Surviving in the cold: yeast mutants with extended hibernating lifespan are oxidant sensitive. Aging (Albany NY) 1(11):957-60 PMID:20157578
- Venters BJ and Pugh BF (2009) A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res 19(3):360-71 PMID:19124666
- Yousef AF, et al. (2009) Requirements for E1A dependent transcription in the yeast Saccharomyces cerevisiae. BMC Mol Biol 10:32 PMID:19374760
- Arnett DR, et al. (2008) A proteomics analysis of yeast Mot1p protein-protein associations: insights into mechanism. Mol Cell Proteomics 7(11):2090-106 PMID:18596064
- Yousef AF, et al. (2008) Coactivator requirements for p53-dependent transcription in the yeast Saccharomyces cerevisiae. Int J Cancer 122(4):942-6 PMID:17957787
- Xella B, et al. (2006) The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization. Mol Microbiol 59(5):1531-41 PMID:16468993
- Shen X, et al. (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299(5603):112-4 PMID:12434013
- Entian KD, et al. (1999) Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet 262(4-5):683-702 PMID:10628851
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- Cruz VE, et al. (2024) The DEAD-box ATPase Dbp10/DDX54 initiates peptidyl transferase center formation during 60S ribosome biogenesis. Nat Commun 15(1):3296 PMID:38632236
- Marmorale LJ, et al. (2024) Fast-evolving cofactors regulate the role of HEATR5 complexes in intra-Golgi trafficking. J Cell Biol 223(3) PMID:38240799
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Choudhry SK, et al. (2023) Nuclear pore complexes mediate subtelomeric gene silencing by regulating PCNA levels on chromatin. J Cell Biol 222(9) PMID:37358474
- Cohen N, et al. (2023) A systematic proximity ligation approach to studying protein-substrate specificity identifies the substrate spectrum of the Ssh1 translocon. EMBO J 42(11):e113385 PMID:37073826
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Barkova A, et al. (2022) A proteomic screen of Ty1 integrase partners identifies the protein kinase CK2 as a regulator of Ty1 retrotransposition. Mob DNA 13(1):26 PMID:36401307
- Gavade JN, et al. (2022) Identification of 14-3-3 proteins, Polo kinase, and RNA-binding protein Pes4 as key regulators of meiotic commitment in budding yeast. Curr Biol 32(7):1534-1547.e9 PMID:35240051
- Lu PYT, et al. (2022) A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 222(3) PMID:36066422
- Matabishi-Bibi L, et al. (2022) Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention. Nat Commun 13(1):6331 PMID:36284099
- Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
- Gopalakrishnan R and Winston F (2021) The histone chaperone Spt6 is required for normal recruitment of the capping enzyme Abd1 to transcribed regions. J Biol Chem 297(4):101205 PMID:34543624
- Perica T, et al. (2021) Systems-level effects of allosteric perturbations to a model molecular switch. Nature 599(7883):152-157 PMID:34646016
- Su XB, et al. (2021) SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. J Cell Biol 220(7) PMID:33929514
- den Brave F, et al. (2020) Chaperone-Mediated Protein Disaggregation Triggers Proteolytic Clearance of Intra-nuclear Protein Inclusions. Cell Rep 31(9):107680 PMID:32492414
- Pereira F, et al. (2019) Effect of Sec61 interaction with Mpd1 on endoplasmic reticulum-associated degradation. PLoS One 14(1):e0211180 PMID:30682149
- Wild P, et al. (2019) Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis. Mol Cell 75(4):859-874.e4 PMID:31351878
- Corcoles-Saez I, et al. (2018) Essential Function of Mec1, the Budding Yeast ATM/ATR Checkpoint-Response Kinase, in Protein Homeostasis. Dev Cell 46(4):495-503.e2 PMID:30130531
- Iacovella MG, et al. (2018) Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae. Nucleic Acids Res 46(15):7586-7611 PMID:30011030
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- Jungfleisch J, et al. (2017) A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 27(1):95-106 PMID:27821408
- Makrantoni V, et al. (2017) A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (Bethesda) 7(9):3203-3215 PMID:28754723
- Shen Q, et al. (2017) The chromatin remodeling Isw1a complex is regulated by SUMOylation. Biochem J 474(20):3455-3469 PMID:28899943
- Zimmermann C, et al. (2017) Mapping the Synthetic Dosage Lethality Network of CDK1/CDC28. G3 (Bethesda) 7(6):1753-1766 PMID:28428242
- Babour A, et al. (2016) The Chromatin Remodeler ISW1 Is a Quality Control Factor that Surveys Nuclear mRNP Biogenesis. Cell 167(5):1201-1214.e15 PMID:27863241
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Krietenstein N, et al. (2016) Genomic Nucleosome Organization Reconstituted with Pure Proteins. Cell 167(3):709-721.e12 PMID:27768892
- Petty EL, et al. (2016) Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae. Genetics 203(4):1693-707 PMID:27317677
- Poli J, et al. (2016) Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev 30(3):337-54 PMID:26798134
- Parnell TJ, et al. (2015) The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. Elife 4:e06073 PMID:25821983
- Kurat CF, et al. (2014) Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation. Proc Natl Acad Sci U S A 111(39):14124-9 PMID:25228766
- Willmund F, et al. (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152(1-2):196-209 PMID:23332755
- Gilmore JM, et al. (2012) Characterization of a highly conserved histone related protein, Ydl156w, and its functional associations using quantitative proteomic analyses. Mol Cell Proteomics 11(4):M111.011544 PMID:22199229
- Lafon A, et al. (2012) Functional antagonism between Sas3 and Gcn5 acetyltransferases and ISWI chromatin remodelers. PLoS Genet 8(10):e1002994 PMID:23055944
- Sharifpoor S, et al. (2012) Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 22(4):791-801 PMID:22282571
- Smolle M, et al. (2012) Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19(9):884-92 PMID:22922743
- Wang Y, et al. (2012) Coiled-coil networking shapes cell molecular machinery. Mol Biol Cell 23(19):3911-22 PMID:22875988
- Finnigan GC, et al. (2011) A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187(3):771-83 PMID:21196517
- Akiyoshi B, et al. (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468(7323):576-9 PMID:21107429
- Chen SH, et al. (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285(17):12803-12 PMID:20190278
- Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425-31 PMID:20093466
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Lambert JP, et al. (2009) A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics 8(4):870-82 PMID:19106085
- Tonikian R, et al. (2009) Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol 7(10):e1000218 PMID:19841731
- Arnett DR, et al. (2008) A proteomics analysis of yeast Mot1p protein-protein associations: insights into mechanism. Mol Cell Proteomics 7(11):2090-106 PMID:18596064
- Hasegawa Y, et al. (2008) Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 14(11):2333-47 PMID:18805955
- Collins SR, et al. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806-10 PMID:17314980
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Zhao R, et al. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715-27 PMID:15766533
- Vary JC, et al. (2003) Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 23(1):80-91 PMID:12482963
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
Post-translational Modifications Literature
Paper(s) associated with one or more pieces of post-translational modifications evidence in SGD.
No post-translational modifications literature curated.
Download References (.nbib)
- Lanz MC, et al. (2021) In-depth and 3-dimensional exploration of the budding yeast phosphoproteome. EMBO Rep 22(2):e51121 PMID:33491328
- Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
- MacGilvray ME, et al. (2020) Phosphoproteome Response to Dithiothreitol Reveals Unique Versus Shared Features of Saccharomyces cerevisiae Stress Responses. J Proteome Res 19(8):3405-3417 PMID:32597660
- Swaney DL, et al. (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676-82 PMID:23749301
- Chen SH, et al. (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285(17):12803-12 PMID:20190278
- Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
- Albuquerque CP, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389-96 PMID:18407956
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Hoepfner D, et al. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169(2-3):107-20 PMID:24360837
- Jarolim S, et al. (2013) Saccharomyces cerevisiae genes involved in survival of heat shock. G3 (Bethesda) 3(12):2321-33 PMID:24142923
- Neumüller RA, et al. (2013) Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci Signal 6(289):ra70 PMID:23962978
- Novo M, et al. (2013) Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation. PLoS One 8(9):e74086 PMID:24040173
- Armakola M, et al. (2012) Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44(12):1302-9 PMID:23104007
- Peyroche G, et al. (2012) Sodium selenide toxicity is mediated by O2-dependent DNA breaks. PLoS One 7(5):e36343 PMID:22586468
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID:21329885
- Chen SH, et al. (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285(17):12803-12 PMID:20190278
- Kapitzky L, et al. (2010) Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol 6:451 PMID:21179023
- Theis JF, et al. (2010) The DNA damage response pathway contributes to the stability of chromosome III derivatives lacking efficient replicators. PLoS Genet 6(12):e1001227 PMID:21151954
- Postma L, et al. (2009) Surviving in the cold: yeast mutants with extended hibernating lifespan are oxidant sensitive. Aging (Albany NY) 1(11):957-60 PMID:20157578
- Breslow DK, et al. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5(8):711-8 PMID:18622397
- MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7:113 PMID:16522208
- Lum PY, et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116(1):121-37 PMID:14718172
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Wilson WA, et al. (2002) Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics 1(3):232-42 PMID:12096123