Literature Help
MTG1 / YMR097C Literature
All manually curated literature for the specified gene, organized by relevance to the gene and by
association with specific annotations to the gene in SGD. SGD gathers references via a PubMed search for
papers whose titles or abstracts contain “yeast” or “cerevisiae;” these papers are reviewed manually and
linked to relevant genes and literature topics by SGD curators.
Primary Literature
Literature that either focuses on the gene or contains information about function, biological role,
cellular location, phenotype, regulation, structure, or disease homologs in other species for the gene
or gene product.
No primary literature curated.
Related Literature
Genes that share literature (indicated by the purple circles) with the specified gene (indicated by yellow circle).
Reset
Click on a gene or a paper to go to its specific page within SGD. Drag any of the gene or paper objects around
within the visualization for easier viewing and click “Reset” to automatically redraw the diagram.
Additional Literature
Papers that show experimental evidence for the gene or describe homologs in other species, but
for which the gene is not the paper’s principal focus.
No additional literature curated.
Download References (.nbib)
- Naiyer S, et al. (2022) Transcriptomic analysis of ribosome biogenesis and pre-rRNA processing during growth stress in Entamoeba histolytica. Exp Parasitol 239:108308 PMID:35718007
- De Silva D, et al. (2013) The DEAD box protein Mrh4 functions in the assembly of the mitochondrial large ribosomal subunit. Cell Metab 18(5):712-25 PMID:24206665
- López-Martínez G, et al. (2012) The STF2p hydrophilin from Saccharomyces cerevisiae is required for dehydration stress tolerance. PLoS One 7(3):e33324 PMID:22442684
- Jung PP, et al. (2011) Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 12:331 PMID:21711526
- Yadav V, et al. (2011) Chlorophenol stress affects aromatic amino acid biosynthesis-a genome-wide study. Yeast 28(1):81-91 PMID:20967895
- Szklarczyk R and Huynen MA (2009) Expansion of the human mitochondrial proteome by intra- and inter-compartmental protein duplication. Genome Biol 10(11):R135 PMID:19930686
- Kucejova B, et al. (2008) Pleiotropic effects of the yeast Sal1 and Aac2 carriers on mitochondrial function via an activity distinct from adenine nucleotide transport. Mol Genet Genomics 280(1):25-39 PMID:18431598
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Dimmer KS, et al. (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13(3):847-53 PMID:11907266
Reviews
No reviews curated.
Gene Ontology Literature
Paper(s) associated with one or more GO (Gene Ontology) terms in SGD for the specified gene.
No gene ontology literature curated.
Download References (.nbib)
- Yofe I, et al. (2016) One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 13(4):371-378 PMID:26928762
- Reinders J, et al. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5(7):1543-54 PMID:16823961
- Barrientos A, et al. (2003) MTG1 codes for a conserved protein required for mitochondrial translation. Mol Biol Cell 14(6):2292-302 PMID:12808030
Phenotype Literature
Paper(s) associated with one or more pieces of classical phenotype evidence in SGD for the specified gene.
No phenotype literature curated.
Interaction Literature
Paper(s) associated with evidence supporting a physical or genetic interaction between the
specified gene and another gene in SGD. Currently, all interaction evidence is obtained from
BioGRID.
No interaction literature curated.
Download References (.nbib)
- O'Brien MJ and Ansari A (2024) Protein interaction network revealed by quantitative proteomic analysis links TFIIB to multiple aspects of the transcription cycle. Biochim Biophys Acta Proteins Proteom 1872(1):140968 PMID:37863410
- Carey SB, et al. (2023) A synthetic genetic array screen for interactions with the RNA helicase DED1 during cell stress in budding yeast. G3 (Bethesda) 13(1) PMID:36409020
- Kolhe JA, et al. (2023) The Hsp90 molecular chaperone governs client proteins by targeting intrinsically disordered regions. Mol Cell 83(12):2035-2044.e7 PMID:37295430
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID:37968396
- Singh AP, et al. (2020) Molecular Connectivity of Mitochondrial Gene Expression and OXPHOS Biogenesis. Mol Cell 79(6):1051-1065.e10 PMID:32877643
- Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
- De Silva D, et al. (2017) The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation. Nucleic Acids Res 45(11):6628-6643 PMID:28520979
- Wilms T, et al. (2017) The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability. PLoS Genet 13(6):e1006835 PMID:28604780
- Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science 353(6306) PMID:27708008
- Shin JJ, et al. (2016) Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets. Dis Model Mech 9(9):1039-49 PMID:27519690
- van Leeuwen J, et al. (2016) Exploring genetic suppression interactions on a global scale. Science 354(6312) PMID:27811238
- Elbaz-Alon Y, et al. (2014) A dynamic interface between vacuoles and mitochondria in yeast. Dev Cell 30(1):95-102 PMID:25026036
- Van de Vosse DW, et al. (2013) A role for the nucleoporin Nup170p in chromatin structure and gene silencing. Cell 152(5):969-83 PMID:23452847
- Lee KK, et al. (2011) Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol 7:503 PMID:21734642
- Stirling PC, et al. (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7(4):e1002057 PMID:21552543
- Batisse J, et al. (2009) Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 284(50):34911-7 PMID:19840948
- Kucejova B, et al. (2008) Pleiotropic effects of the yeast Sal1 and Aac2 carriers on mitochondrial function via an activity distinct from adenine nucleotide transport. Mol Genet Genomics 280(1):25-39 PMID:18431598
- Schöner D, et al. (2008) Annotating novel genes by integrating synthetic lethals and genomic information. BMC Syst Biol 2:3 PMID:18194531
- Haarer B, et al. (2007) Modeling complex genetic interactions in a simple eukaryotic genome: actin displays a rich spectrum of complex haploinsufficiencies. Genes Dev 21(2):148-59 PMID:17167106
- Krogan NJ, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637-43 PMID:16554755
- Pan X, et al. (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124(5):1069-81 PMID:16487579
Regulation Literature
Paper(s) associated with one or more pieces of regulation evidence in SGD, as found on the
Regulation page.
No regulation literature curated.
High-Throughput Literature
Paper(s) associated with one or more pieces of high-throughput evidence in SGD.
No high-throughput literature curated.
Download References (.nbib)
- Mota MN, et al. (2024) Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microb Cell Fact 23(1):71 PMID:38419072
- Ogbede JU, et al. (2021) A genome-wide portrait of pervasive drug contaminants. Sci Rep 11(1):12487 PMID:34127714
- Ayers MC, et al. (2020) Oxidative Stress Responses and Nutrient Starvation in MCHM Treated Saccharomyces cerevisiae. G3 (Bethesda) 10(12):4665-4678 PMID:33109726
- Johnston NR, et al. (2020) Genome-Wide Identification of Genes Involved in General Acid Stress and Fluoride Toxicity in Saccharomyces cerevisiae. Front Microbiol 11:1410 PMID:32670247
- Stenger M, et al. (2020) Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae. Microb Cell 7(9):234-249 PMID:32904421
- Johnson AJ, et al. (2016) Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 8(5):542-50 PMID:27146641
- Mülleder M, et al. (2016) Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 167(2):553-565.e12 PMID:27693354
- Ostrow AZ, et al. (2014) Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9(2):e87647 PMID:24504085
- VanderSluis B, et al. (2014) Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol 15(4):R64 PMID:24721214
- Zhang H and Singh KK (2014) Global genetic determinants of mitochondrial DNA copy number. PLoS One 9(8):e105242 PMID:25170845
- Bode M, et al. (2013) Inaccurately assembled cytochrome c oxidase can lead to oxidative stress-induced growth arrest. Antioxid Redox Signal 18(13):1597-612 PMID:23198688
- Huang Z, et al. (2013) A functional variomics tool for discovering drug-resistance genes and drug targets. Cell Rep 3(2):577-85 PMID:23416056
- Lis M, et al. (2013) Chemical genomic screening of a Saccharomyces cerevisiae genomewide mutant collection reveals genes required for defense against four antimicrobial peptides derived from proteins found in human saliva. Antimicrob Agents Chemother 57(2):840-7 PMID:23208710
- Marek A and Korona R (2013) Restricted pleiotropy facilitates mutational erosion of major life-history traits. Evolution 67(11):3077-86 PMID:24151994
- North M, et al. (2012) Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 8(6):e1002699 PMID:22685415
- Pir P, et al. (2012) The genetic control of growth rate: a systems biology study in yeast. BMC Syst Biol 6:4 PMID:22244311
- Qian W, et al. (2012) The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep 2(5):1399-410 PMID:23103169
- Vizoso-Vázquez A, et al. (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94(1):173-84 PMID:22189861
- de Castro PA, et al. (2011) Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae. Eukaryot Cell 10(3):398-411 PMID:21193549
- Dos Santos SC and Sá-Correia I (2011) A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine. Mol Genet Genomics 286(5-6):333-46 PMID:21960436
- Jayakody LN, et al. (2011) Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnol Lett 33(2):285-92 PMID:20960220
- Yadav V, et al. (2011) Chlorophenol stress affects aromatic amino acid biosynthesis-a genome-wide study. Yeast 28(1):81-91 PMID:20967895
- Yoshikawa K, et al. (2011) Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae. Yeast 28(5):349-61 PMID:21341307
- Batova M, et al. (2010) Chemogenomic and transcriptome analysis identifies mode of action of the chemosensitizing agent CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine). BMC Genomics 11:153 PMID:20202201
- Landstetter N, et al. (2010) Functional genomics of drug-induced ion homeostasis identifies a novel regulatory crosstalk of iron and zinc regulons in yeast. OMICS 14(6):651-63 PMID:20695822
- Holbein S, et al. (2009) Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA 15(5):837-49 PMID:19324962
- McLaughlin JE, et al. (2009) A genome-wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A 106(51):21883-8 PMID:20007368
- Merz S and Westermann B (2009) Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol 10(9):R95 PMID:19751518
- Teixeira MC, et al. (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75(18):5761-72 PMID:19633105
- Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
- Sinha H, et al. (2008) Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180(3):1661-70 PMID:18780730
- Hu Z, et al. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683-7 PMID:17417638
- Brown JA, et al. (2006) Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol Syst Biol 2:2006.0001 PMID:16738548
- Deutschbauer AM, et al. (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169(4):1915-25 PMID:15716499
- Outten CE, et al. (2005) Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochem J 388(Pt 1):93-101 PMID:15641941
- Hartman JL and Tippery NP (2004) Systematic quantification of gene interactions by phenotypic array analysis. Genome Biol 5(7):R49 PMID:15239834
- Dimmer KS, et al. (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13(3):847-53 PMID:11907266
- Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
- Jorgensen P, et al. (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297(5580):395-400 PMID:12089449
- Steinmetz LM, et al. (2002) Systematic screen for human disease genes in yeast. Nat Genet 31(4):400-4 PMID:12134146